You can get $0, \frac{1}{2}, 1$ point from each small test.

- to get additional 0.5p you need to compute the first problem of the given topic
- to get additional 1p you need to compute all three subproblems for the given topic

Please give me solutions to these problems at the beginning of next exercise on a **signed**, **separate** paper.

$$1. - LD/LI$$

• Are given vectors LD?

$$\begin{pmatrix} 4\\2\\1 \end{pmatrix}, \begin{pmatrix} -2\\-1\\-4 \end{pmatrix} \text{ and } \begin{pmatrix} 5\\-1\\3 \end{pmatrix}$$

• Find vector \vec{x} which satisfies: $2(\vec{x} + \vec{u}) = 3\vec{v} + \begin{pmatrix} 0\\0\\2 \end{pmatrix}$,

where
$$\vec{u} = \begin{pmatrix} 1\\ -3\\ 0 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} 0\\ 2\\ 1 \end{pmatrix}$

• Determine, if vector $\vec{x} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$ can be written as linear combination of vectors $\vec{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$?

If yes, then calculate coefficients of such combination.

- 2. Rank of matrix
 - Determine rank of matrix $A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 3 \end{pmatrix}$.
 - Compute matrices $C = A \cdot B$ and $D = B \cdot A$ if possible, where $A = \begin{pmatrix} 3 & 1 & 0 \\ 5 & 2 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ -5 & 1 \\ 0 & -2 \end{pmatrix}$.
 - Determine for which parameter $k \in \mathbb{R}$ is matrix $\begin{pmatrix} 1 & 2 & 0 \\ k & k & 1 \\ 2 & 2 & k-1 \end{pmatrix}$ regular. Consider computation of determinant.

3. – Inverse matrix

- Compute inverse matrix to matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.
- For which parameter λ there is a solution?

$$2x - y + z + u = 1$$
$$x + 2y - z + 4u = 2$$
$$x + 7y - 4z + 11u = \lambda.$$

• Determine x_3 satisfying equations

$$x_1 - 2x_2 + 3x_3 - 4x_4 = 4$$

$$x_2 - x_3 + x_4 = -3$$

$$x_1 + 3x_2 - 3x_4 = 1$$

$$-7x_2 + 3x_3 + x_4 = -3.$$

4. – System of eqs.

• Write the vectors
$$\vec{a} = \begin{pmatrix} 3\\2\\5 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 5\\6\\7 \end{pmatrix}$ as a linear combination
of following vectors $\begin{pmatrix} 1\\3\\2 \end{pmatrix}$, $\begin{pmatrix} 2\\-1\\3 \end{pmatrix}$ and $\begin{pmatrix} 5\\1\\8 \end{pmatrix}$. Is the expression
unique?

• Find a solution for x_1 depending on parameter $m \in \mathbb{R}$

$$-7x_2 - 5x_3 = -1$$

(2m - 1)x₁ - x₂ = 1
4mx₁ - 7x₂ - 5x₃ = 0.

• Prove that sequence $a_n = \frac{n}{n+3}$ is increasing.

5. – Sequences and limits

- Compute $\lim_{n \to +\infty} \left(\frac{4}{n} \frac{3n}{n^2 + 1}\right)$.
- Compute $\lim_{n \to +\infty} \frac{6n^2 3n + 2}{(3n 2)^2 9n^2}$.
- Compute $\lim_{x \to 0} \frac{1}{x}$, $\lim_{x \to +\infty} \frac{1}{x}$ and $\lim_{x \to +\infty} \sin\left(\frac{1}{x}\right)$, $\lim_{x \to 0} \frac{\sin x}{x}$.

- 6. Domain of function
 - Find domain of function $f(x) = \frac{1}{x-2}$ and its rank. Then plot its graph.
 - Find domain of function $f(x) = \ln\left(\frac{1}{x-2}\right)$ and its rank. Then plot its graph.
 - Compute derivative of functions:

1)
$$\cos x^2$$
 2) $(\cos x)^2$ 3) $\cos(\cos x)$

- 7. Derivation
 - Compute derivative of functions:

1)
$$\tan(x+1)$$
 2) $(\arctan x)^2$ 3) $\ln(\cos x)$

- For which real numbers b, c has function $f(x) = x^2 + bx + c$ tangent line y = x in the point x = 2?
- Write tangent line of function $f(x) = \frac{8}{4+x^2}$ in the point $x_0 = 2$ and approximate with it unknown value f(1.9).

8. – Tangent

- By using tangent line of function approximate value of $h(2) = \ln 5$, where $h(x) = \ln(x^2 + 1)$ with choice $x_0 = 3$.
- Determine local extrema of function $f(x) = \frac{2x}{x^2+1}$.
- A firm uses a single input, labor, to produce output q according to the production function $q = 10\sqrt{L}$. The commodity sells for \$250 per unit and the wage rate is \$50 per hour. Find:
 - a) the profit-maximizing quantity of L,
 - b) the profit-maximizing quantity of q,
 - c) the maximum profit.

9. – Local extrema

- Determine local extrema of function $g(x) = x^2 \ln x$
- Find intervals where function $f(x) = x \ln x$ is convex.
- Analyse behaviour of function $f(x) = x + \frac{1}{x}$.
- 10. Integrals
 - Compute integral $\int x \ln x \, dx$.
 - Compute integral $\int \frac{5x-4}{x^2-8x+12} \, \mathrm{d}x$.
 - Compute average production of company ABC during two years, if the production depends on season and it is given by $f(t) = 2 + \sin\left(\frac{t}{2\pi}\right) \cos\left(\frac{t}{2\pi}\right)$.