

Matematics I

Today lecture: Ing. Jan Valášek, Ph.

Winter semester 2022/2023

Matematics I - Lecture 1

Recommended literature:

- 1. J. Neustupa: Matematics I. CTU Publishing House, Prague, 1996.
- 2. Neustupa, J. and Kračmar, S.: Problems in Mathematics I, CTU Publishing House, Prague, 1999.
- 3. Keisler, H. J.: Elementary Calculus: An Infinitesimal Approach, 2nd edition, Prindle, Weber & Schmidt, 1986.
- 4. Calculus Volume I., Volume II., Volume III., provided by cnx.org/.
- 5. College algebra, provided by https://cnx.org/.

These slides will be available at *http* : *//marian.fsik.cvut.cz/~neustupa/M*1_Neu_lecture01.*pdf*

Syllabus

- Sets, statements and logic
- Linear algebra operations with vectors, linear independency
- Matrices Gaussian elimination, determinants, system of linear equations
- Sequences basic properties, limits
- Functions domain and range, basic properties, elementary functions
- Limits finite and infinite limits of functions, properties, calculation
- Derivatives definitions, properties, geometrical and physical meaning
- Application of derivatives, analysis of arbitrary function
- Integration the Riemann and Newton integral and their connection
- Integration integral of elementary functions, substitution and integration by parts, applications in probability

- Follow information from www.muvs.cvut.cz/
- Read your official email !!!
- Check information in KOS system

I. Linear algebra

I.1. Vector space

Spaces \mathbb{R}^n and \mathbb{E}_n . Set of all ordered n-tuples of real numbers is denoted by \mathbb{R}^n . Elements of \mathbb{R}^n are called points in \mathbb{R}^n or arithmetic vectors with **n** components:

Notation of points in \mathbb{R}^n : [1, 2], $[x_1, x_2]$, etc.

 $[1, 2], [x_1, x_2], \text{ etc.}$ if n = 2, $[2, 0, 5][x_1, x_2, x_3], \text{ etc.}$ if n = 3, $[x_1, x_2, \dots, x_n], \text{ etc.}$ for any n.

Let us define distance of two points $X = [x_1, x_2, \dots, x_n]$, and $Y = [y_1, y_2, \dots, y_n]$, as real number given by

$$d(X,Y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2},$$

Then \mathbb{R}^n becomes so called n-dimensional Euclidean space, denoted as \mathbb{E}_n .

Examples: E_1 is line, E_2 is plane.

Arithmetic n-dimensional space. Let us define the sum of two arithmetic vectors $X = [x_1, x_2, \dots, x_n], \text{ and } Y = [y_1, y_2, \dots, y_n] \text{ by}$ $[x_1, x_2, \dots, x_n] + [y_1, y_2, \dots, y_n] = [x_1 + y_1, x_2 + y_2, \dots, x_n + y_n]$

And the product of arbitrary real number λ and arbitrary vector $X = [x_1, x_2, \dots, x_n]$,

$$\lambda \cdot [x_1, x_2, \ldots, x_n] = [\lambda x_1, \lambda x_2, \ldots, \lambda x_n].$$

 \mathbb{R}^n with these operations is called n-dimensional arithmetic space.

Vectors in E_2 . In following we will deal with "free vectors". Explain differences. Set of all vectors in E_2 will be denoted by $V(E_2)$. Vectors will be denoted by \mathbf{u} , \mathbf{v} , etc.

Every vector can be given by means of its coordinates. Coordinates are written in round brackets, e.g. $\mathbf{u} = (-2, 1), \mathbf{x} = (x_1, x_2)$ etc.

0

For $\mathbf{u} = (u_1, u_2)$, $\mathbf{v} = (v_1, v_2)$ of $\mathbf{V}(\mathsf{E}_2)$ and $\lambda \in \mathsf{R}$ we define:

Sum of vectors \mathbf{u} , \mathbf{v} : $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$, Product of vector \mathbf{u} and number λ : $\lambda \cdot \mathbf{u} = (\lambda u_1, \lambda u_2)$.

It can be easily verified:

(a) For any vectors $\mathbf{u}, \mathbf{v} \in \mathbf{V}(\mathsf{E}_2)$ and any real number λ the result of $\mathbf{u} + \mathbf{v}$ as well as $\lambda \cdot \mathbf{u}$ belongs to $\mathbf{V}(\mathsf{E}_2)$. This fact is called that $\mathbf{V}(\mathsf{E}_2)$ is closed to operations of sum and product with a real number.

(b) For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}(\mathbf{\xi})$ and any real numbers α, β it holds:

- (b1) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u},$
- (b2) (u + v) + w = u + (v + w),
- $(b3) 1 \cdot \mathbf{u} = \mathbf{u},$

(b4)
$$\alpha \cdot (\beta \cdot \mathbf{u}) = (\alpha \cdot \beta) \cdot \mathbf{u},$$

(b5)
$$\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{y}$$

(b6)
$$(\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}$$

(c) There exists zero vector $\mathbf{o} = (0, 0)$ with following property: For any $\mathbf{u} \in \mathbf{V}(\mathsf{E}_2)$ it holds

$$\mathbf{u} + \mathbf{o} = \mathbf{u}$$
.

(d) There exists for each $\mathbf{u} \in \mathbf{V}(E_2)$ such a vector $-\mathbf{u} \in \mathbf{V}(E_2)$ called opposite vector to vector \mathbf{u}), that holds

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{o}.$$

We can define similarly $V(E_3)$ and so on. Comment operations.

More examples of vector spaces.

Definition (vector space). Each non-empty set with defined operations of addition of vectors and multiplication of vectors by real number with properties a)-d) is called vector space.

Examples: $V(E_2)$, $V(E_3)$

Due to last definition we can deal further with general vector space \mathbf{V} .

Following theorems can be proved:

Theorem: (existence of zero element) There is unique zero element in space V.

Theorem: (existence of opposite element) Opposite vector $(-\mathbf{u})$ to vector \mathbf{u} is in vector space \mathbf{V} uniquely determined.

Theorem: For vector space V and vector $\mathbf{u} \in V$ and real α following holds:

1) $0 \cdot u = o$, 2) $(-1) \cdot u = -u$, 3) $\alpha \cdot o = o$.

Definition (linear combination): If $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ are group of n vectors from vect. space \mathbf{V} and $\alpha_1, \alpha_2, \ldots, \alpha_n$ are real numbers then result of

 $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n$ (which belongs to vect. space **V**)

is called linear combination of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$.

Examples.

Definition (linear dependency of vectors).

Group of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ is called linear dependent if there exist such n real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$, where at least one of them is non-zero, and it holds

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n = \mathbf{o}.$$

Group of vectors, which are not linearly dependent, are called linearly independent. Let us denote it as LI.

Question : How to determine if given group of vectors is LD or LI?

Theorem. If oné vector from group $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ from vector space \mathbf{V} is equal to zero vector, then the group is LD.

Proof.

In general:

Theorem: If and only if it is possible to express one from the group of n vectors (n > 1) as linear combination of the others, then group $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ is LD.

Sketch of proof.

Remark: If group of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ from vect. space \mathbf{V} contains two identical vectors then it is LD.