MATHEMATICS I

selected problems from the exam tests in previous years

I. LINEAR ALGEBRA

- 1. a) Define the notions dimension and basis of a vector space V.
- b) Decide whether the vectors $\vec{x} = (4, 2, 0)$, $\vec{y} = (1, 2, -1)$ a $\vec{z} = (7, 8, 1)$ form a basis in the vector space $V(\mathbb{E}_3)$.
- c) If the vector $\vec{u} = (21, 18, 3)$ can be expressed as a linear combination of the vectors $\vec{x}, \vec{y}, \vec{z}$, find the coefficients in this combination.
- 2. a) Define what it means that vectors $\vec{u}_1, \ldots, \vec{u}_n$ are linearly dependent, respectively linearly independent.
- b) For which values of parameter $a \in \mathbb{R}$ are the vectors $\vec{u} = (-1, 0, 1)$, $\vec{v} = (0, 1, a)$, $\vec{w} = (2, a, a)$ linearly dependent?
- c) What is, in this case, dimension of the vector space generated by these vectors?
- 3. a) Define the notions rank of a matrix and regular matrix.
- b) For which values of parameter $\alpha \in \mathbb{R}$ is the rank of the matrix $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -3 & \alpha \\ -3 & 4 & 1 \end{pmatrix}$ equal to 3 and for which α is the rank equal to 2?
- c) Is matrix A regular for $\alpha = 1$? (Give reasons for your answer.)
- 4. a) Define the notion of an *inverse matrix* to a square matrix A.
- b) Decide about the existence of the inverse matrix to the matrix $A = \begin{pmatrix} 1, & 0, & 0 \\ 3, & 1, & 0 \\ 0, & 3, & 1 \end{pmatrix}$.
- c) If the inverse matrix exists, calculate it. Verify the result by computing the product $A \cdot A^{-1}$.
- 5. $A = \begin{pmatrix} 3, & 1 \\ 5, & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0, & 1 \\ -2, & 3 \end{pmatrix}$, $C = \begin{pmatrix} 2, & 2 \\ 2, & -1 \end{pmatrix}$
- a) Find the matrix A^{-1} . b) Find the matrix B^{-1} .
- c) Calculate matrix X such that $A \cdot X \cdot B = C$.
- 6. Given the matrix $A = \begin{pmatrix} 1, & 1, & 0 \\ 0, & 0, & 3 \\ 0, & 2, & 1 \end{pmatrix}$.
- a) Calculate the matrix $B = A^2$ (= $A \cdot A$).
- b) Define the notion of a $regular\ matrix$. Decide if the given matrix A is regular.
- c) If the inverse matrix to A exists, calculate it.
- 7. Given the matrix with parameters $a, b \in \mathbb{R}$: $A = \begin{pmatrix} 1, & 0, & -1, & -1 \\ 0, & -1, & -1, & 1 \\ a, & b, & 0, & 0 \\ -1, & -1, & 1, & 0 \end{pmatrix}$.
- b) Define the notions of a regular matrix and a singular matrix.
- c) For which values of parameters a, b does the homogeneous system of linear algebraic equations $A \cdot X = O$ have a non–zero solution?

- 8. a) Explain principles of the Cramer rule. Under which conditions it can be applied?
 - b) Verify the assumptions for the system

$$x + y + 2z = 1$$

 $2x + y = -4$
 $5x + y - 3z = -13$

- c) Applying Cramer's rule, calculate the value of unknown y.
- 9. a) Calculate the determinant of the system with parameter $a \in \mathbb{R}$:

$$\begin{array}{rcl}
 x + 2y + & az & = & 0 \\
 -x + 3y + & az & = & -8 \\
 3x - & y + & 2z & = & 13.
 \end{array}$$

- b) Explain principles of the Cramer rule. Is it possible to apply Cramer's rule to the system given above if a = 1? (Give reasons for your answer.)
- c) Assuming that a = 1, calculate the value of unknown z.
- 10. a) Write the Frobenius theorem.
 - b) What is the number of solutions of the given system in dependence on parameter $a \in \mathbb{R}$:

$$\begin{array}{rcl} x & - & y + & z & = & 1 \\ x & + & y + 3z & = & 1 \\ (2a - 1)x + (a + 1)y + & z & = 1 - a \end{array}$$

c) Solve the system for a = 1.

II. DIFFERENTIAL CALCULUS

1. a) Evaluate

$$\lim_{n \to +\infty} (\sqrt{n^2 + 1} - \sqrt{n^2 - 1}).$$

- b) Define what it means that the sequence $\{a_n\}$ is increasing.
- c) Create an increasing sequence whose limit is 3.
- 2. a) Evaluate

$$\lim_{n \to +\infty} \frac{n + \cos(n^2)}{2n + 1}.$$

- b) Define what it means that the sequence $\{a_n\}$ is decreasing.
- c) Create a decreasing sequence whose limit is 3.
- 3. a) Evaluate

$$\lim_{n \to +\infty} \frac{(2n-1)^2 - 4n^2 + 1}{n^2 - (n+5)^2}.$$

- b) Write the theorem on a limit of a subsequence.
- c) Create a sequence that has no limit. (Give reasons why your sequence has no limit.)
- 4. a) Using the definition, decide about the monotonicity of the sequence $\{\frac{n+1}{2n+1}\}$.
 - b) Evaluate the limit of the sequence $\lim_{n \to \infty}$

$$\lim_{n \to +\infty} n(\sqrt{n^2 + 1} - n).$$

- c) Evaluate the limit of the function verify its assumptions.
- $\lim_{x \to 0} \frac{\cos x 1}{x \sin x}$. If you apply l'Hospital's rule,
- 5. a) Given the function $f: f(x) = \frac{x}{\sqrt{x^2 4x}}$. Find D(f).
 - b) Calculate the limits of f(x) for $x \to +\infty$ and $x \to 0$ (if the limits exist).
 - c) Is the given function f odd, even or periodic? (Give reasons for your answer.)

- 6. a) Given the function $f(x) = \arccos(x^2 1)$. Specify D(f).
 - b) Write the equation of the tangent line to the graph of function f at the point $[x_0, f(x_0)]$, if $x_0 = 1$.
 - c) Is function f even or odd? (Give reasons for your answer.)
- 7. a) Given the function $f: f(x) = \ln(x^2 + 4x + 3)$. Specify D(f).
 - b) Write the equation of the tangent line to the graph of function f at the point $[x_0, f(x_0)]$, if $x_0 = 1$.
 - c) Using the linear approximation of f (i.e. the result of part b)), calculate an approximate value of function f at the point x = 0, 9.

Other variants of problem 7 with different functions f and points x_0 :

b)
$$f(x) = x + \sqrt{1 - x^2}$$

c)
$$x_0 = 0$$

b)
$$f(x) = \frac{x+2}{\sqrt{5-x}}$$
 c) $x_0 = 1$
b) $f(x) = \arcsin \sqrt{x+1}$ c) $x_0 = -\frac{1}{2}$

c)
$$x_0 = 1$$

b)
$$f(x) = \arcsin \sqrt{x+1}$$

c)
$$x_0 = -\frac{1}{5}$$

In problems 12–14:

- a) find intervals of monotonicity and local extremes of the given function f,
- b) find points of inflection and intervals where function f is concave up or down.
- c) Sketch the graph.

12.
$$f(x) = 1 + x^2 - \frac{1}{2}x^4$$
 13. $f(x) = (x-3)\sqrt{x}$ 14. $f(x) = e^{2x-x^2}$

13.
$$f(x) = (x-3)\sqrt{x}$$

14.
$$f(x) = e^{2x-x^2}$$

- 15. Given the function $f(x) = \frac{1}{9 x^2}$.
 - a) Specify D(f). Is the given function even or odd? (Give reasons for your answer.)
 - b) Find intervals of monotonicity and local extremes.
 - c) Calculate the limits of f for $x \to +\infty$, $x \to 3+$ and $x \to 3-$. Sketch the graph.

In problems 17–20:

- a) find intervals of monotonicity and local extremes for the given function f,
- b) find intervals where function f is concave up or concave down and find points of inflec-
- c) evaluate the limits at the end points of D(f) and sketch the graph.
- 17. $f(x) = 3 x \frac{4}{(x+2)^2}$ with the restricted domain $D(f) = (-2, +\infty)$

$$18. \quad f(x) = x \ln x$$

19.
$$f(x) = (x-2)e^x$$

18.
$$f(x) = x \ln x$$
 19. $f(x) = (x-2)e^x$ 20. $f(x) = x^2 + 2\ln(x+2)$.

III. INTEGRAL CALCULUS

In problems 1–6:

a) write the theorem on the integration by parts (including the assumptions),

b) evaluate the integral $\int f(x) dx$, where function f has the concrete form

1.
$$f(x) = x \operatorname{arctg} x$$

2.
$$f(x) = x^2 \ln x$$

3.
$$f(x) = (x^2 + x + 2) e^x$$

4.
$$f(x) = \ln^2 x$$

5.
$$f(x) = (3x - 5) \sin x$$

6.
$$f(x) = (2x+3)e^{3x}$$

On which intervals do the integrals exist?

In problems 7–20:

a) write the theorem on integration by substitution (including the assumptions),

b) evaluate the integral $\int f(x) dx$, where function f has the concrete form

7.
$$f(x) = \cos(1 - 2x)$$

8.
$$f(x) = \frac{x-2}{x^2 - 4x + 8}$$

9.
$$f(x) = \frac{e^{2x}}{2 + e^{2x}}$$

10.
$$f(x) = \frac{x^3}{\sqrt{x^4 + 7}}$$

$$11. \quad f(x) = \frac{1}{1 + \sqrt{x}}$$

12.
$$f(x) = \frac{e^{1/x}}{x^2}$$

13.
$$f(x) = x\sqrt{1 - x^2}$$

14.
$$f(x) = \frac{\cos x}{\sqrt[3]{\sin^2 x}}$$

15.
$$f(x) = \left(\frac{1}{1 + \ln^2 x} + \frac{1}{\sqrt{\ln x}}\right) \frac{1}{x}$$
 16. $f(x) = \sin^2 x \cos^3 x$

$$16. \quad f(x) = \sin^2 x \cos^3 x$$

$$17. \quad f(x) = \cos^2 x + \cos^3 x$$

18.
$$f(x) = \cos^7 x$$

19.
$$f(x) = x^3 e^{-x^2}$$

20.
$$f(x) = \frac{\sqrt{x-2}}{x-1}$$

On which intervals do the integrals exist?

In problems 21–26 calculate the integral of the given rational function. On which intervals do the integrals exist?

21.
$$\int \frac{x^3}{x^2 + 3x + 2} \, \mathrm{d}x$$

22.
$$\int \frac{2x+1}{x^2+4x+4} \, \mathrm{d}x$$

$$26. \quad \int \frac{1}{x^2 - x + 1} \, \mathrm{d}x$$

- 27. a) Calculate the area of the region, which is for $x \in \langle 1, 2 \rangle$ bounded by the x-axis and the curve $y = x^2 + \frac{1}{x^2}$.
 - b) Evaluate the definite integral $\int_0^1 (3x+1) e^x dx$.
- 28. a) Find the antiderivative (and the interval of its existence) to the function $f(x) = \frac{1}{4+x^2}$.
 - b) Calculate the area of the region, which is bounded by the x-axis and by the curves $y = \frac{1}{4+x^2}$, x = 0, x = 2.
- 31. Given the function $f(x) = x^2 \sin x$.
 - a) Calculate the integral $\int f(x) dx$. Verify the result by differentiation.
 - b) Find the mean value of the function f on the interval $(0, \pi)$, i.e. the value $\mu = \frac{1}{\pi} \int_0^{\pi} f(x) dx$.