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Motivation in background – parametrization of vocal
folds vibration

⇒ introduction of Dynamic mode decomposition.
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Dynamic mode decomposition

• Equation-free modeling and approximating dynamics from data

• Goal = find low-rank representation of high-dimensional system

• Local linearization, connection to the Koopman operator

• DMD modes have monofrequency content unlike POD

• Developed by Peter Schmid in 2009
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DMD theory
Let’s have a general system described by

dx

dt
= f(x, t, µ). (1)

Its’ solution gives us data xi = x(ti).

Discrete-time representation of (1) or discretized PDE

xk = x(k∆t) ⇒ xk+1 = F(xk).

The key of the DMD is to find matrix A

xk+1 = Axk, k ∈ {1, . . . , N − 1}

based on the given data set {x1,x2, . . . ,xN}, e.g. state vectors.
This matrix A approximates the original system by the linear one

dx

dt
= Ax, where A = exp(A∆t).



Motivation DMD theory DMD application Conclusion Results of CM paper

Connection to Koopman operator

Koopman operator K is a linear, infinite-dimensional operator,
which exactly represents a nonlinear dynamical system.

It is defined on the Hilbert space H of functions of g : Rn 7→ R by

Kg = g ◦ F, i.e. by Kg(xk) = g(F(xk)) = g(xk+1).

DMD is finite-dimensional approximation of Koopman operator.

It is fundamentally different than linearizing the dynamics. The
approximation quality depends on the chosen measurements g(x).
See also Carleman linearization.
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DMD matrix
More construction of A possible, see e.g. [Tu etal., 2014].

One of the most favourable is following. Let’s denote

X =

 | | |
x1 x2 . . . xN−1
| | |

 ∈ Rm,N−1 and X′ =

 | | |
x2 x3 . . . xN

| | |


Then

X′ ≈ AX ⇒ A = X′X†, i.e. A ∈ Rm,m!

which minimizes error

||X′ − AX||F ,

(
i.e.

N−1∑
k=1

||xk+1 − Axk||2

)
.

In practice the DMD matrix A is approximated by a projection to
the subspace defined by r� m SVD L-vectors, i.e. by matrix
Ã ∈ Rr,r.
.
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DMD modes
System dynamics is determined by eigendecomposition of A on:

• (complex) eigenvalues λi and the related eigenvectors Φi

The given state-space trajectory is (approximately) reproduced by

x(tk+1) = xk+1 ≈ Akx1 =

M∑
i=1

Φi exp(ωi tk) bi, (2)

where

• M ≤ N − 1 DMD modes are selected (more options!).

• b = (bi) is the initial amplitude of each mode (b = Φ†x1).

• ωi are approximate continuous-time eigenvalues,

given as ωi = ln(λi)/∆t.

In the case A ≈ Ã, M � r DMD modes are typically selected.

Formula (2) can be used for future prediction (for tk > tN ).

.
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DMD algorithm

1. Perform truncated singular value decomposition (SVD) of X:

X ≈ UΣV?, U ∈ Cm,r . . .

Note: How to choose r? Choose e.g. σrr > 10−3 or see [DMD book].

2. Construct matrix Ã as:

Ã = UAU? = UX′VΣ−1 ∈ Rr,r.

3. Compute eigendecomposition of Ã:

ÃW = ΛW.

4. Reconstruct eigendecomposition of A from W and Λ:

Λ X Φ = X′VΣ−1W.

5. Select M DMD modes (e.g. based on criterion
∫

exp(ωit)bi dt)
and use formula (2) for dynamics reconstruction.
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Flow-induced vibrations

• Vocal folds model [Valášek etal., Applications of Mathematics, 2019].

• Inlet velocity vDir prescribed by penalization approach.

• Velocity vDir = 1.95 m/s exceeds critical value vcrit ≈ 1.9 m/s.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Motivation DMD theory DMD application Conclusion Results of CM paper

Flow-induced vibrations

x- and y-component of VF displacement

Time behaviour of gap & pressure drop
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Application of DMD

• Last 300 time steps of structural displacements

• 7 DMD modes are chosen

Spectrum of matrix Ã and DMD modes amplitudes.
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Application of DMD
DMD modes 1 & 3

Similar to eigenmodes 3 (MAC = 84%) & 5 (MAC = 74%)
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Application of DMD
DMD modes 2 (not oscillatory) & 4

Similar to eigenmodes ∅ & 1 (MAC = 85%)
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Future state prediction
Future states can be predicted by formula

x(tk+1) = xk+1 ≈ Akx1 =
M∑
i=1

Φi exp(ωi tk) bi, k > N.

Prediction of two cycles (300 time steps)
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Comparison

Aspect POD DMD

Principle statistical physical

Truncation error optimal high

Frequency content mixed pure

Noise sensitivity low high

Advantages established interpretation,
prediction, control,
system identification
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Conclusion

• Introduction of DMD method
• simple and efficient method of model reduction
• good interpretation of results (decay/growth, frequency)
• suitable also for measurements post-processing
• computationally cheap method
• applicable to systems with low-rank attractor (SVD

spectrum)

• Many improvements of DMD – DMD modes
orthogonalization, noise sensitivity reduction, . . .

• Many possible extensions – control applications, system
identification, . . .

• Application to flutter analysis
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Thank for your attention :)
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Results in CM paper

VF displacement of slightly different flutter simulation
⇒ 5 different intervals analyzed by DMD
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Comparison of DMD decompositions

case time steps DMD modes ω of dominant mode epred · 10−3

A 150 6 5.81 + 168.5 · 2π · i 1.3096

B 300 6 53.2 + 5.8 · 2π · i 1.2364

C 150 4 9.8 + 168.5 · 2π · i 0.47357

D 150 5 65.69 + 167.3 · 2π · i ’small’

E 300 5 1000.5 + 101.5 · 2π · i ’big’
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Results in CM paper
CASE C
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Results in CM paper
CASE C
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DMD modes
DMD mode with a) big growth rate and Im(ω) = 168.45 Hz
b) rapidly decaying and Im(ω) = 0
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