DMD theory

DMD application

Conclusion

Results of CM paper

DYNAMIC MODE DECOMPOSITION AND ITS APPLICATION TO THE FLUTTER ANALYSIS

Jan Valášek, Petr Sváček

Department of Technical Mathematics Faculty of Mechanical Engineering, CTU

9^{th} November 2021

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

DMD theor 00000 DMD application

Conclusion

Results of CM pape:

ション ふゆ マ キャット マックシン

Motivation in background – parametrization of vocal folds vibration

 \Rightarrow introduction of **Dynamic mode decomposition**.

DMD application 00 0000

・ロッ ・ 日 ・ ・ 日 ・

Dynamic mode decomposition

- Equation-free modeling and approximating dynamics from data
- Goal = find low-rank representation of high-dimensional system
- Local linearization, connection to the Koopman operator
- DMD modes have monofrequency content unlike POD
- Developed by Peter Schmid in 2009

DMD theory 00000

DMD application 00 0000 Conclusion

Results of CM pape:

DMD theory

Let's have a general system described by

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t, \mu). \tag{1}$$

Its' solution gives us data $\mathbf{x}_i = \mathbf{x}(t_i)$.

Discrete-time representation of (1) or discretized PDE

$$\mathbf{x}_k = \mathbf{x}(k\Delta t) \quad \Rightarrow \quad \mathbf{x}_{k+1} = \mathbf{F}(\mathbf{x}_k).$$

The key of the DMD is to find matrix \mathbb{A}

$$\mathbf{x}_{k+1} = \mathbb{A}\mathbf{x}_k, \qquad k \in \{1, \dots, N-1\}$$

based on the given data set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$, e.g. state vectors. This matrix \mathbb{A} approximates the original system by the linear one

$$\frac{d\mathbf{x}}{dt} = \mathcal{A}\mathbf{x}, \qquad where \ \mathbb{A} = \exp(\mathcal{A}\Delta t).$$

DMD theory

DMD application 00 0000 Conclusion

(日) (日) (日) (日) (日) (日) (日) (日)

Connection to Koopman operator

Koopman operator \mathcal{K} is a linear, infinite-dimensional operator, which exactly represents a nonlinear dynamical system.

It is defined on the Hilbert space \mathcal{H} of functions of $g: \mathbb{R}^n \mapsto \mathbb{R}$ by

$$\mathcal{K}g = g \circ \mathbb{F}, \qquad i.e. \ by \quad \mathcal{K}g(\mathbf{x}_k) = g(\mathbb{F}(\mathbf{x}_k)) = g(\mathbf{x}_{k+1}).$$

DMD is finite-dimensional approximation of Koopman operator.

It is fundamentally different than linearizing the dynamics. The approximation quality depends on the chosen measurements $g(\mathbf{x})$. See also Carleman linearization.

DMD theory 00000

DMD application 00 0000 Conclusion

Results of CM paper

DMD matrix

More construction of \mathbbm{A} possible, see e.g. [Tu et al., 2014].

One of the most favourable is following. Let's denote

$$\mathbb{X} = \begin{pmatrix} | & | & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_{N-1} \\ | & | & | \end{pmatrix} \in \mathbb{R}^{m,N-1} \quad and \quad \mathbb{X}' = \begin{pmatrix} | & | & | \\ \mathbf{x}_2 & \mathbf{x}_3 & \dots & \mathbf{x}_N \\ | & | & | \end{pmatrix}$$

Then

٠

$$\mathbb{X}' \approx \mathbb{A}\mathbb{X} \qquad \Rightarrow \qquad \mathbb{A} = \mathbb{X}'\mathbb{X}^{\dagger}, \quad i.e. \quad \mathbb{A} \in \mathbb{R}^{m,m}!$$

which minimizes error

$$||\mathbb{X}' - \mathbb{A}\mathbb{X}||_F, \qquad \left(i.e. \quad \sum_{k=1}^{N-1} ||\mathbf{x}_{k+1} - \mathbb{A}\mathbf{x}_k||_2\right).$$

In practice the DMD matrix \mathbb{A} is approximated by a projection to the subspace defined by $r \ll m$ SVD L-vectors, i.e. by matrix $\tilde{\mathbb{A}} \in \mathbb{R}^{r,r}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへで

 ${ {\rm DMD}_{\scriptstyle 00000} \atop _{\scriptstyle 0}}$

DMD application 00 0000 Conclusion

Results of CM paper

うして ふゆう ふほう ふほう ふしつ

DMD modes

System dynamics is determined by eigendecomposition of $\mathbb A$ on:

• (complex) eigenvalues λ_i and the related eigenvectors $\mathbf{\Phi}_i$

The given state-space trajectory is (approximately) reproduced by

$$\mathbf{x}(t_{k+1}) = \mathbf{x}_{k+1} \approx \mathbb{A}^k \mathbf{x}_1 = \sum_{i=1}^M \mathbf{\Phi}_i \exp(\omega_i t_k) b_i, \qquad (2)$$

where

- $M \leq N 1$ DMD modes are selected (more options!).
- $\mathbf{b} = (b_i)$ is the initial amplitude of each mode $(\mathbf{b} = \mathbf{\Phi}^{\dagger} \mathbf{x}_1)$.
- ω_i are approximate continuous-time eigenvalues, given as $\omega_i = \ln(\lambda_i)/\Delta t$.

 ${ {\rm DMD}_{\scriptstyle 00000} \atop _{\scriptstyle 0}}$

DMD application 00 0000 Conclusion

Results of CM paper

(日) (日) (日) (日) (日) (日) (日) (日)

DMD modes

System dynamics is determined by eigendecomposition of $\mathbb A$ on:

• (complex) eigenvalues λ_i and the related eigenvectors $\mathbf{\Phi}_i$

The given state-space trajectory is (approximately) reproduced by

$$\mathbf{x}(t_{k+1}) = \mathbf{x}_{k+1} \approx \mathbb{A}^k \mathbf{x}_1 = \sum_{i=1}^M \mathbf{\Phi}_i \exp(\omega_i t_k) b_i, \qquad (2)$$

where

- $M \leq N 1$ DMD modes are selected (more options!).
- $\mathbf{b} = (b_i)$ is the initial amplitude of each mode $(\mathbf{b} = \mathbf{\Phi}^{\dagger} \mathbf{x}_1)$.
- ω_i are approximate continuous-time eigenvalues, given as ω_i = ln(λ_i)/Δt.

In the case $\mathbb{A} \approx \tilde{\mathbb{A}}$, $M \ll r$ DMD modes are typically selected.

Formula (2) can be used for future prediction (for $t_k > t_N$).

 $\begin{array}{c} \text{DMD theory} \\ \circ \circ \circ \circ \circ \end{array}$

DMD application 00 0000 Conclusion

Results of CM paper

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

DMD algorithm

1. Perform **truncated** singular value decomposition (SVD) of X:

 $\mathbb{X} \approx \mathbb{U}\Sigma\mathbb{V}^{\star}, \qquad \mathbb{U} \in \mathbb{C}^{m,r} \dots$

Note: How to choose r? Choose e.g. $\sigma_{rr} > 10^{-3}$ or see [DMD_book]. 2. Construct matrix $\tilde{\mathbb{A}}$ as:

 $\tilde{\mathbb{A}} = \mathbb{U}\mathbb{A}\mathbb{U}^{\star} = \mathbb{U}\mathbb{X}'\mathbb{V}\Sigma^{-1} \quad \in \mathbb{R}^{r,r}.$

 $\begin{array}{c} \text{DMD theory} \\ \circ \circ \circ \circ \circ \end{array}$

DMD application 00 0000 Conclusion

Results of CM paper

ション ふゆ マ キャット マックシン

DMD algorithm

1. Perform **truncated** singular value decomposition (SVD) of X:

 $\mathbb{X} \approx \mathbb{U}\Sigma\mathbb{V}^{\star}, \qquad \mathbb{U} \in \mathbb{C}^{m,r} \dots$

Note: How to choose r? Choose e.g. $\sigma_{rr} > 10^{-3}$ or see [DMD_book]. 2. Construct matrix $\tilde{\mathbb{A}}$ as:

$$\tilde{\mathbb{A}} = \mathbb{U}\mathbb{A}\mathbb{U}^{\star} = \mathbb{U}\mathbb{X}'\mathbb{V}\Sigma^{-1} \in \mathbb{R}^{r,r}.$$

3. Compute eigendecomposition of $\tilde{\mathbb{A}}$:

$$\tilde{\mathbb{A}}\mathbb{W} = \Lambda\mathbb{W}.$$

4. Reconstruct eigendecomposition of A from W and Λ :

$$\Lambda \checkmark \qquad \mathbf{\Phi} = \mathbb{X}' \mathbb{V} \Sigma^{-1} \mathbb{W}.$$

 $\begin{array}{c} \text{DMD theory} \\ \circ \circ \circ \circ \circ \end{array}$

DMD application 00 0000 Conclusion

Results of CM paper

DMD algorithm

1. Perform **truncated** singular value decomposition (SVD) of \mathbb{X} :

 $\mathbb{X} \approx \mathbb{U}\Sigma\mathbb{V}^{\star}, \qquad \mathbb{U} \in \mathbb{C}^{m,r} \dots$

Note: How to choose r? Choose e.g. $\sigma_{rr} > 10^{-3}$ or see [DMD_book]. 2. Construct matrix $\tilde{\mathbb{A}}$ as:

$$\tilde{\mathbb{A}} = \mathbb{U}\mathbb{A}\mathbb{U}^{\star} = \mathbb{U}\mathbb{X}'\mathbb{V}\Sigma^{-1} \quad \in \mathbb{R}^{r,r}.$$

3. Compute eigendecomposition of $\tilde{\mathbb{A}}$:

$$\tilde{\mathbb{A}}\mathbb{W} = \Lambda\mathbb{W}.$$

4. Reconstruct eigendecomposition of \mathbbm{A} from \mathbbm{W} and Λ :

$$\Lambda \checkmark \qquad \mathbf{\Phi} = \mathbb{X}' \mathbb{V} \Sigma^{-1} \mathbb{W}.$$

5. Select *M* DMD modes (e.g. based on criterion $\int \exp(\omega_i t) b_i dt$) and use formula (2) for dynamics reconstruction.

DMD theory

DMD application $\bullet 0$ $\circ \circ \circ \circ \circ$

Flow-induced vibrations

- Vocal folds model [Valášek etal., Applications of Mathematics, 2019].
- Inlet velocity $\mathbf{v}_{\mathrm{Dir}}$ prescribed by penalization approach.
- Velocity $\mathbf{v}_{\text{Dir}} = 1.95 \text{ m/s}$ exceeds critical value $v_{\text{crit}} \approx 1.9 \text{ m/s}$.

DMD theory

Conclusion

Results of CM paper

Flow-induced vibrations

x- and $y\text{-}\mathrm{component}$ of VF displacement

900

DMD theory 00000 0 DMD application $\circ\circ$ $\circ\circ\circ$ Conclusion

Results of CM paper

Application of DMD

- Last 300 time steps of structural displacements
- 7 DMD modes are chosen

Spectrum of matrix $\tilde{\mathbb{A}}$ and

DMD modes amplitudes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DMD theory

Conclusion

Results of CM paper

Application of DMD

DMD modes 1 & 3 $\,$

Similar to eigenmodes 3 (MAC = 84%) & 5 (MAC = 74%)

Frequency 181.3293 Hz

Frequency 317.2082 Hz

◆□▶ ◆□▶ ★ □▶ ★ □▶ = □ の < ○

DMD theor

Conclusion

Results of CM paper

Application of DMD

DMD modes 2 (not oscillatory) & 4

Similar to eigenmodes \emptyset

& 1 (MAC = 85%)

Frequency 76.7667 Hz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

DMD theory

DMD application ${}^{\circ\circ}_{\circ\circ\circ\circ\bullet}$

Conclusion

Results of CM paper

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future state prediction

Future states can be predicted by formula

$$\mathbf{x}(t_{k+1}) = \mathbf{x}_{k+1} \approx \mathbb{A}^k \mathbf{x}_1 = \sum_{i=1}^M \mathbf{\Phi}_i \exp(\omega_i t_k) b_i, \quad k > N.$$

Prediction of two cycles (300 time steps)

			- 2			

DMD theory 00000 DMD application 00 0000 Conclusion

Results of CM paper

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Comparison

Aspect	POD	DMD
Principle	statistical	physical
Truncation error	optimal	high
Frequency content	mixed	pure
Noise sensitivity	low	high
Advantages	established	interpretation,
		prediction, control,
		system identification

DMD theory 00000 0 DMD application oo oooo Conclusion

Results of CM paper

ション ふゆ マ キャット マックシン

Conclusion

- Introduction of DMD method
 - simple and efficient method of model reduction
 - good interpretation of results (decay/growth, frequency)
 - suitable also for measurements post-processing
 - computationally cheap method
 - applicable to systems with low-rank attractor (SVD spectrum)
- Many improvements of DMD DMD modes orthogonalization, noise sensitivity reduction, ...
- Many possible extensions control applications, system identification, ...
- Application to flutter analysis

 $\substack{ \mathrm{DMD \ theory} \\ 00000 \\ 0 }$

DMD application 00 0000 Conclusion

Results of CM paper

ъ

References

basics & theory:

J. N Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode decomposition: data-driven modeling of complex systems. SIAM, 2016.

J. H Tu, C. W Rowley, etal.

On dynamic mode decomposition: theory and applications. *Journal of Computational Dynamics*, 2014.

P. J Schmid.

Dynamic mode decomposition of numerical and experimental data. *Journal of fluid mechanics*, 2010.

cavity flow & control:

Hassan Arbabi and Igor Mezić.

Study of dynamics in post-transient flows using Koopman mode decomposition. *Physical Review Fluids*, 2017.

🔋 Hassan Arbabi, Milan Korda, and Igor Mezić.

A data-driven koopman model predictive control framework for nonlinear partial differential equations. *IEEE*, 2018. (=), (=)

DMD theory 00000 0 DMD application 00 0000 Conclusion

Results of CM paper

(日) (日) (日) (日) (日) (日) (日) (日)

References

system identification:

S. L Brunton, J. L Proctor, and J N. Kutz.

Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *PNAS*, 2016. extensions:

Bernd R. Noack, W. Stankiewicz, M. Morzyski, and P. J. Schmid.

Recursive dynamic mode decomposition of transient and post-transient wake flows.

Journal of Fluid Mechanics, 2016.

S. Le Clainche, R. Moreno-Ramos, P. Taylor, and J. M. Vega. New robust method to study flight flutter testing. *Journal of Aircraft*, 2019.

Motivation	DMD theory	DMD application	Conclusion	Results of CM paper
	00000	00 0000		

Thank for your attention :)

DMD theory 00000 DMD application 00 0000

Conclusion

Results of CM paper

Results in CM paper

VF displacement of slightly different flutter simulation \Rightarrow 5 different intervals analyzed by DMD

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

DMD theory

DMD application

Conclusion

Results of CM paper

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Comparison of DMD decompositions

case	time steps	DMD modes	ω of dominant mode	$e_{\rm pred} \cdot 10^{-3}$
Α	150	6	$5.81 + 168.5 \cdot 2\pi \cdot i$	1.3096
В	300	6	$53.2 + 5.8 \cdot 2\pi \cdot i$	1.2364
С	150	4	$9.8 + 168.5 \cdot 2\pi \cdot i$	0.47357
D	150	5	$65.69 + 167.3 \cdot 2\pi \cdot i$	'small'
Е	300	5	$1000.5 + 101.5 \cdot 2\pi \cdot i$	'big'

DMD theor

DMD application 00 0000

Conclusion

Results of CM paper

Results in CM paper

 $\mathrm{CASE}\ \mathbf{C}$

(日) (日) (日) (日) (日) (日)

DMD theory

DMD application 00 0000

Conclusion

Results of CM paper

Results in CM paper

CASE \mathbf{C}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results of CM paper

DMD modes

DMD mode with a) big growth rate and $Im(\omega) = 168.45 \,\text{Hz}$ b) rapidly decaying and $Im(\omega) = 0$

- 3