# Aeroelastic problem with three degrees of freedom

#### Abstract

This report includes the formulation of the two dimensional aeroelastic problem with structure with three degrees of freedom.

# Contents

| 1 | Airfoil notation                                                                                                                                                                                                                                                                                                                                                                 | 2                                                |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 2 | Mathematical description of the airfoil with three dof                                                                                                                                                                                                                                                                                                                           | 3                                                |
| 3 | Methods description3.1 Analytical/Euler's method3.2 Numerical method/Fourier transformation                                                                                                                                                                                                                                                                                      | <b>4</b><br>4                                    |
| 4 | <ul> <li>Analysis of the eigenfrequencies</li> <li>4.1 Model problem I.</li> <li>4.1.1 Analytical Frequencies</li> <li>4.2 Numerical Frequencies</li> <li>4.2 Model problem II.</li> <li>4.2.1 Analytical Frequencies</li> <li>4.2.2 Numerical Frequencies</li> <li>4.3 Model problem III.</li> <li>4.3.1 Analytical Frequencies</li> <li>4.3.2 Numerical Frequencies</li> </ul> | <b>5</b><br>8<br>9<br>10<br>10<br>11<br>12<br>12 |
| 5 | Influence of the proportional structural damping on frequencies5.1Model problem I                                                                                                                                                                                                                                                                                                | <b>13</b><br>14<br>14<br>15<br>15<br>16<br>16    |
| 6 | Aeroelastic Simulations<br>6.1 Model Problem I.                                                                                                                                                                                                                                                                                                                                  | <b>17</b><br>17                                  |

# **1** Airfoil notation



Figure 1: Airfoil pitching, plunging and rotation of the flap



Figure 2: Typical airfoil section with three degrees of freedom.

By b the semichord of the airfoil is denoted, e b denotes the location of the elastic axis of the wing after midchord,  $x_{\alpha} b$  the location of the center of gravity after the elastic axis,  $c_{\beta} b$  denotes the location of the flap hinge after the midchord and  $x_{\beta} b$  the location of the center of gravity of the flap.

# 2 Mathematical description of the airfoil with three dof

A typical section airfoil (semichord *b*) in subsonic air flow is considered as shown in Figure 1. A trailing edge flap is hinged at the distance  $c_{\beta} b$  after the midchord. By *h*,  $\alpha$  and  $\beta$  the plunging of the elastic axis, pitching of the airfoil and rotation of the flap is denoted, respectively (see Figure 2). The fluid motion generates an aerodynamic lift L = L(t), an aerodynamic moment M = M(t) and an hinge moment  $M_{\beta} = M_{\beta}(t)$ . By  $k_h$ ,  $k_{\alpha}$  and  $k_{\beta}$  the spring constant of the wing bending, the wing torsional stiffness and the flap hinge moment are denoted, respectively. The mass matrix  $\mathbb{M}$  of the structural system is defined with the aid of the entire airfoil mass m, the moment of inertia  $I_{\alpha}$  of the airfoil around the elastic axis and the flap moment of inertia  $I_{\beta}$  of the flap around the hinge. The equations of the motion for a flexibly supported rigid airfoil with flap, cf. Dowell1995, read

$$\mathbb{M}\,\ddot{\eta} + \mathbb{B}\dot{\eta} + \mathbb{K}\,\eta + \mathbf{f}_{NL}(\eta) = \mathbf{f},\tag{1}$$

where

$$\mathbb{M} = \begin{pmatrix} m & S_{\alpha} & S_{\beta} \\ S_{\alpha} & I_{\alpha} & (c_{\beta} - e)bS_{\beta} + \mathbf{I}_{\beta} \\ S_{\beta} & (c_{\beta} - e)bS_{\beta} + \mathbf{I}_{\beta} & I_{\beta} \end{pmatrix},$$
$$\mathbb{K} = \begin{pmatrix} k_{h} & 0 & 0 \\ 0 & k_{\alpha} & 0 \\ 0 & 0 & k_{\beta} \end{pmatrix}, \qquad \mathbb{D} = \begin{pmatrix} d_{h} & 0 & 0 \\ 0 & d_{\alpha} & 0 \\ 0 & 0 & d_{\beta} \end{pmatrix},$$

where  $\eta = (h, \alpha, \beta)^T$ ,  $\mathbf{f} = (-L, M, M_\beta)^T$ . By  $\mathbf{f}_{NL}$  the nonlinear terms are denoted, e.g. the weakening/hardening effects of the flap hinge spring can be considered.

# 3 Methods description

#### 3.1 Analytical/Euler's method

The Euler method of solution base on eigenvalues/eigenfrequencies is employed. The system (1) is transformed to the system of the first order by the substitution

$$x=\left(egin{array}{c}\eta\\dot\eta\end{array}
ight),$$

thus

$$\left(\begin{array}{cc} \mathbb{E} & 0\\ 0 & \mathbb{M} \end{array}\right) \frac{d}{dt} \left(\begin{array}{c} \eta\\ \dot{\eta} \end{array}\right) = \left(\begin{array}{cc} 0 & \mathbb{E}\\ -\mathbb{K} & -\mathbb{D} \end{array}\right) \left(\begin{array}{c} \eta\\ \dot{\eta} \end{array}\right),$$

and

$$\frac{d}{dt} \begin{pmatrix} \eta \\ \dot{\eta} \end{pmatrix} = \begin{pmatrix} 0 & \mathbb{E} \\ -\mathbb{M}^{-1}\mathbb{K} & -\mathbb{K}^{-1}\mathbb{D} \end{pmatrix} \begin{pmatrix} \eta \\ \dot{\eta} \end{pmatrix}.$$
(2)

The frequency is then found as imaginary parts  $f = \beta/(2\pi)$  of the eigenvalues  $\lambda = \alpha + i\beta$  of the matrix A

$$\mathbb{A} = \left( \begin{array}{cc} 0 & \mathbb{E} \\ -\mathbb{M}^{-1}\mathbb{K} & -\mathbb{K}^{-1}\mathbb{D} \end{array} \right).$$

#### 3.2 Numerical method/Fourier transformation

The system (2) was approximated by 4th order RK method. Here, the method is given for general system  $\dot{\mathbf{y}} = f(t, \mathbf{y})$ . The approximation at time  $t^n$  is denoted by  $\mathbf{y}^n$ . Then for  $n = 0, 1, \ldots$  we have

$$\mathbf{k}_{1} = \mathbf{f}(t_{n}, \mathbf{y}^{n}),$$

$$\mathbf{k}_{2} = \mathbf{f}(t_{n} + \frac{1}{2}\Delta t, \mathbf{y}^{n} + \frac{1}{2}\Delta t\mathbf{k}_{1}),$$

$$\mathbf{k}_{3} = \mathbf{f}(t_{n} + \frac{1}{2}\Delta t, \mathbf{y}^{n} + \frac{1}{2}\Delta t\mathbf{k}_{2}),$$

$$\mathbf{k}_{4} = \mathbf{f}(t_{n} + \Delta t, \mathbf{y}^{n} + \Delta t\mathbf{k}_{3}),$$

$$\mathbf{y}^{n+1} = \mathbf{y}^{n} + \frac{\Delta t}{6}(\mathbf{k}_{1} + 2\mathbf{k}_{2} + 2\mathbf{k}_{3} + \mathbf{k}_{4}).$$
(3)

In order to validate both the numerical method and the implementation the method was included into Fluid-Structure Interaction Program, where the fluid part of the solution was ommited, zero aerodynamical forces (f = 0,  $f_{NON} = 0$ ) used and the solution of the system of ordinary differential equations obtained by (3).

# 4 Analysis of the eigenfrequencies

The problem

$$\mathbb{M} = \begin{pmatrix} m & S_{\alpha} & S_{\beta} \\ S_{\alpha} & I_{\alpha} & (c_{\beta} - e)bS_{\beta} + \mathbf{I}_{\beta} \\ S_{\beta} & (c_{\beta} - e)bS_{\beta} + \mathbf{I}_{\beta} & I_{\beta} \end{pmatrix} = \\
= \begin{pmatrix} 0.08662 & -0.7796 & S_{\beta} \\ -0.7796 & 4.87291 \cdot 10^{-4} & (c_{\beta} - e)bS_{\beta} + I_{\beta} \\ S_{\beta} & (c_{\beta} - e)bS_{\beta} + I_{\beta} & I_{\beta} \end{pmatrix}, \\
\mathbb{K} = \begin{pmatrix} 105.109 & 0 & 0 \\ 0 & 3.695582 & 0 \\ 0 & 0 & k_{\beta} \end{pmatrix},$$

where  $k_{\beta} \in [0.001, 0.05]$ .

• Model problem I. (flap  $\pm 0\%$ )

$$S_{\beta} = 0 \text{ kgm}, \qquad I_{\beta} = 1 \cdot 10^{-6} \text{ kg m}^2, \qquad (c_{\beta} - e)b = 0.12 \text{ m}$$

• Model problem II. (flap +5%, center of gravity of the flap closer to the elastic axis of the airfoil, distance 0.105 m.)

$$S_{\beta} = -9.09 \cdot 10^{-4} \text{ kgm}, \qquad I_{\beta} = 2.364 \cdot 10^{-6} \text{ kg m}^2, \qquad (c_{\beta} - e)b = 0.12 \text{ m}$$

• Model problem III. (flap -5%, center of gravity of the flap closer to the elastic axis of the airfoil, distance 0.135 m.)

 $S_{\beta} = 9.09 \cdot 10^{-4} \text{ kg m}, \qquad I_{\beta} = 2.364 \cdot 10^{-6} \text{ kg m}^2, \qquad (c_{\beta} - e)b = 0.12 \text{ m}$ 

l = 0.079 m???

### 4.1 Model problem I.



| MATLAB                                                               | script output                                                                                                  |          |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|--|
|                                                                      |                                                                                                                |          |  |
| Feb 01, 07 19:21                                                     | fig2.txt                                                                                                       | Page 1/1 |  |
| M =                                                                  |                                                                                                                |          |  |
| 0.086622000000000<br>-0.000779600000000<br>0.0000000000000000<br>K = | -0.000779600000000 0.00000000000000<br>0.000487291000000 0.00001000000000<br>0.00001000000000 0.00001000000000 |          |  |
| <pre>105.1089999999995<br/>0.000000000000000<br/>0.0000000000</pre>  |                                                                                                                |          |  |
|                                                                      |                                                                                                                |          |  |
|                                                                      |                                                                                                                |          |  |
| Thursday February 01, 20                                             | 007                                                                                                            | fig2.txt |  |

#### 4.1.1 Analytical Frequencies



#### 4.1.2 Numerical Frequencies



### 4.2 Model problem II.



#### 4.2.1 Analytical Frequencies



#### 4.2.2 Numerical Frequencies



### 4.3 Model problem III.



#### 4.3.1 Analytical Frequencies



#### 4.3.2 Numerical Frequencies



# 5 Influence of the proportional structural damping on frequencies

The problem

$$\mathbb{M} = \begin{pmatrix} m & S_{\alpha} & S_{\beta} \\ S_{\alpha} & I_{\alpha} & (c_{\beta} - e)bS_{\beta} + \mathbf{I}_{\beta} \\ S_{\beta} & (c_{\beta} - e)bS_{\beta} + \mathbf{I}_{\beta} & I_{\beta} \end{pmatrix} = \\ = \begin{pmatrix} 0.08662 & -0.7796 & S_{\beta} \\ -0.7796 & 4.87291 \cdot 10^{-4} & (c_{\beta} - e)bS_{\beta} + I_{\beta} \\ S_{\beta} & (c_{\beta} - e)bS_{\beta} + I_{\beta} & I_{\beta} \end{pmatrix}, \\ \mathbb{K} = \begin{pmatrix} 105.109 & 0 & 0 \\ 0 & 3.695582 & 0 \\ 0 & 0 & k_{\beta} \end{pmatrix}, \\ \mathbb{D} = 0.001 \,\mathbb{K}, \end{cases}$$

where  $k_{\beta} \in [0.001, 0.05]$ .

• Model problem I. (flap  $\pm 0\%$ )

$$S_{\beta} = 0 \text{ kg m}, \qquad I_{\beta} = 1 \cdot 10^{-6} \text{ kg m}^2, \qquad (c_{\beta} - e)b = 0.12 \text{ m}$$

• Model problem II. (flap +5%, center of gravity of the flap closer to the elastic axis of the airfoil, distance 0.105 m.)

$$S_{\beta} = -9.09 \cdot 10^{-4} \text{ kg m}, \qquad I_{\beta} = 2.364 \cdot 10^{-6} \text{ kg m}^2, \qquad (c_{\beta} - e)b = 0.12 \text{ m}$$

• Model problem III. (flap -5%, center of gravity of the flap closer to the elastic axis of the airfoil, distance 0.135 m.)

$$S_{\beta} = 9.09 \cdot 10^{-4} \text{ kg m}, \qquad I_{\beta} = 2.364 \cdot 10^{-6} \text{ kg m}^2, \qquad (c_{\beta} - e)b = 0.12 \text{ m}$$

## 5.1 Model problem I.

### 5.1.1 Analytical Frequencies



## 5.2 Model problem II.

### 5.2.1 Analytical Frequencies



## 5.3 Model problem III.

### 5.3.1 Analytical Frequencies



# 6 Aeroelastic Simulations

### 6.1 Model Problem I.





U = 12m/s



U = 16m/s



U = 20m/s



U = 24m/s



U = 28m/s

