Aeroelastic problem with two degrees of freedom Turbulent and laminar computations

Abstract

This report includes the formulation of the two dimensional aeroelastic problem with structure with three degrees of freedom.

Contents

1	Matl	Nathematical models														2										
	1.1	Fluid mo	odels																							2
	1.2	STRUC	TURE	MOD	EL (VKF	R40).																		3
	1.3	STRUC	TURE	MOD	EL (VKF	R30	ý.														•	• •			4
2	VKR	VKR 30/VKR 30T															5									
	2.1	5 m/s																								5
	2.2	10 m/s																								6
	2.3	15 m/s																								7
	2.4	20 m/s																								8
	2.5	25 m/s																								9
	2.6	28 m/s			•••		·	•••	• •	·	• •	• •		•••	·	•••		•	•	• •	•	•		Ċ	•	10
	27	30 m/s			•••	••••	•	•••	• •	•	• •	• •	•	•••	•	• •	• •	•	•	• •	•	•	•••	•	•	11
	2.1	32 m/s			• •	• • •	·	• •	• •	•	• •	• •	•	• •	•	• •	• •	•	•	• •	•	•	•••	•	•	19
	2.0	52 11/5			• •	• • •	•	•••	• •	•	• •	• •	•	• •	•	• •	• •	•	•	• •	•	• •	•••		•	14
3	VKR	VKR40/VKR40T															13									
	3.1	5 m/s																								13
	3.2	10 m/s																								14
	3.3	15 m/s																								15
	3.4	20 m/s																								16
	3.5	25 m/s																								17
	3.6	30 m/s																								18
	3.7	35 m/s																								19
	3.8	38 m/s			•••		·	•••	• •	·	• •	• •		•••	·	•••		•	•	• •	•	•		Ċ	•	20
	39	40 m/s			• •		•	•••	• •	•	• •	• •	•	• •	•	•••	• •	•	•	• •	•	•	•••	•	•	20
	3 10	45 m/e			•••	• • •	•	• •	• •	•	• •	• •	•	• •	•	• •	• •	•	•	• •	•	•	•••	•	•	21 99
	5.10	TJ 11/3			• •		•		• •	•	• •	• •	•	• •	•	• •	• •	•	•	• •	•	•	• •	•	•	

1 Mathematical models

1.1 Fluid models

- laminar model
- RANS + Spallart Almaras turbulence model
- RANS + algebraic turbulence model

1.2 STRUCTURE MODEL (VKR40)

$$\begin{split} m\ddot{h} + k_{hh}h + S_{\alpha} \ddot{\alpha} \cos \alpha - S_{\alpha} \dot{\alpha}^{2} \sin \alpha + d_{hh}\dot{h} &= -L(t), \\ S_{\alpha}\ddot{h}\cos \alpha + I_{\alpha}\ddot{\alpha} + k_{\alpha\alpha}\alpha + d_{\alpha\alpha}\dot{\alpha} &= M(t), \end{split}$$

m = 0.086622 kg $S_{\alpha} = -0.000779673 \text{ kg m}$

- $I_{\alpha} = 0.000487291 \text{ kg m}^2,$
- $k_{hh} = 105.109 \text{ N/m},$
- $k_{\alpha\alpha} = 3.695582 \text{ N m/rad},$
- $l = 0.05 \,\mathrm{m},$
 - $c = 0.3 \, \mathrm{m},$
 - $\rho = 1.225 \text{ kg/m}^3,$
 - $\nu = 1.5 \cdot 10^{-5} \text{ m/s}^2$

1.3 STRUCTURE MODEL (VKR30)

$$\begin{split} m\ddot{h} + k_{hh}h + S_{\alpha}\,\ddot{\alpha}\,\cos\alpha - S_{\alpha}\dot{\alpha}^{2}\sin\alpha + d_{hh}\dot{h} &= -L(t),\\ S_{\alpha}\ddot{h}\cos\alpha + I_{\alpha}\ddot{\alpha} + k_{\alpha\alpha}\alpha + d_{\alpha\alpha}\dot{\alpha} &= M(t), \end{split}$$

$$\begin{array}{rcl} m &=& 0.086622 \ {\rm kg} \\ S_{\alpha} &=& 0.000779673 \ {\rm kg} \ {\rm m} \\ I_{\alpha} &=& 0.000487291 \ {\rm kg} \ {\rm m}^2, \\ k_{hh} &=& 105.109 \ {\rm N/m}, \\ k_{\alpha\alpha} &=& 3.695582 \ {\rm N} \ {\rm m/rad}, \\ l &=& 0.05 \ {\rm m}, \\ c &=& 0.3 \ {\rm m}, \\ \rho &=& 1.225 \ {\rm kg/m}^3, \end{array}$$

 $\nu = 1.5 \cdot 10^{-5} \text{ m/s}^2$

2 VKR 30/VKR 30T

2.1 5 m/s

2.2 10 m/s

2.3 15 m/s

2.4 **20 m/s**

2.5 **25 m/s**

2.6 28 m/s

2.7 **30 m/s**

2.8 32 m/s

3 VKR40/VKR40T

3.1 **5 m/s**

3.2 10 m/s

3.3 15 m/s

3.4 **20 m/s**

3.5 **25 m/s**

3.6 **30 m/s**

3.7 35 m/s

3.8 38 m/s

3.9 40 m/s

3.10 **45 m/s**

