Partial derivatives

- 1. Find a domain of definition of following functions (and sketch it), compute all partial derivatives:
 - (a) $f(x,y) = \ln(9 x^2 9y^2)$
 - (b) $f(x,y) = x^y$
 - (c) $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z}$
 - (d) $f(x, y, z) = xz 5x^2y^3z^4$
- 2. To given function $f(x, y, z, t) = x^2 y \cos(\frac{z}{t})$ find the $\frac{\partial f}{\partial t}$.
- 3. Compute all partial derivatives of $f(x, y, z) = x \sin(y z)$ in a point A = [1; 0; 0]. What does these values mean?
- 4. Compute all partial derivatives of $f(x, y, z) = ze^{xyz}$ in a point A = [0; 2; -1]. What does these values mean?
- 5. a) Compute all partial derivatives of f(x, y) = ln(2x y) + 3x³ xy in a point A = [1; 1].
 b) Write a tangent line of the function in a cut x ≡ 1 in tangent point A.
- 6.* Compute first and second order partial derivatives of following functions: (a) $f(x,y) = x^2 + 5xy + \sin(xy) + xe^{y^2/2}$ (b) $f(x,y) = y + x^2y + 4y^3x - \ln(y^2 + x)$
- 7. a) Compute all partial derivatives of f(x, y) = ln(2x y) + 3x³ xy in a point A = [1; 1].
 b) Write a tangent line of the function in a cut x ≡ 1 in tangent point A.
- 8. a) Compute all partial derivatives of f(x, y, z) = ze^{xyz} in a point A = [0; 2; -1].
 b) Write a tangent line of the function in a cut y ≡ 2 ∧ z ≡ -1 in tangent point A.
- 9. Verify that a function $u(x,y) = e^y(y^2 x^2)$ is a solution of an equation

$$y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = xu.$$

10. Verify that a function $u(x,t) = \sin(x-ta)$ (with parameter $a \in \mathbb{R}$) is a solution of an equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

Differential and tangent (hyper-)plane

- 11. a) Write (total) differential of a function $f(x, y) = \frac{y}{x}$ in a point $A_0 = [2; 1]$. b) Approximate the increment of the function between points A_0 and $A_1 = [2.1; 1.2]$ (i.e. $\Delta f = f(A_1) - f(A_0) = ?$)
- 12. By using the (total) differential, approximate the value of $f(0.97; 1.02; 0.99) = \frac{\sqrt[4]{0.97}}{1.02^3 \sqrt[3]{0.99}}$ (with 2 decimal places precision) hint: Use known value f(1; 1; 1).
- 13. Given f(x, y) = 3y² 2x² + x and a point T = [2; -1; ?].
 a) Compute P.D. of the function in a point [2; -1].
 b) Find an equation of the tangent plane (τ) to the graph of the function at the point T.
- 14. Find an equation of the plane (τ) tangent to the graph of $f(x,y) = x \sin(x+y)$ at a point T = [-1;1;?]. Find also an equation of a line (ν) normal to the graph of f at point T.
- 15. a) Find an equation of the plane tangent to the graph of $f(x, y) = \ln(x + y)$ at a point [1;0;?]. b) Use the result to approximate the functional value $f(A_1)$ in a point $A_1 = [1.1; 0.1]$.

- 16. Given $f(x, y) = 2x^2 y^2$ and a plane σ : 8x 6y z + 12 = 0.
 - a) Find a plane (τ) tangent to the graph of f and parallel to the plane σ .
 - b) Find a line (ν) normal to the graph of f and normal to the plane σ .
- 17. Find an equation of the hyper-plane (τ) tangent to the graph of $f(x, y, z) = \ln(x^2 y + 3z)$ at a point T = [2; 1; 1; ?].
- 18. Given $f(x, y, z) = \ln(z + \sqrt{9 x^2 y^2})$,
 - a) Find Domain of definition of f and sketch it (at least in 2 cuts).
 - b) Find an equation of the hyper-plane (τ) tangent to the graph of f at a point T = [0; 0; 1; ?].