Limits

1. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{1}{\sqrt{x^{2}+y^{2}}}$
(b)* Can you prove (in this special case) that the candidate is the only possibility?
hint: Try the rotational symmetry
2. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{\sin x \sin y}{x y}$
(b)* Can you prove (in this special case) that the candidate is the only possibility?
hint: Remember what is true for multiplication of the limits from M1
3. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow \infty}\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$
(b)* Can you prove that the candidate is the only possibility?
4. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{x+y}{x y}$
(b) Prove that the limit doesn't exist. hint: Try different lines
5. Prove that the $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{x y^{2}}{x^{2}+y^{4}}$ doesn't exist. hint: Try different parabolas
6. Decide if the following function is continuous in point $[0 ; 0]$:
$f(x, y)=\left\langle\begin{array}{cc}2 & \text { for } \quad[x, y]=[0 ; 0] \\ \frac{\sin \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}+1}-1} & \text { elsewhere }\end{array}\right.$

Derivatives with parameters

7. Compute the derivative of the function $f(x)=\frac{1}{\tan \left(\frac{a}{x}\right)}$, where $a \in \mathbb{R}$ is a parameter.
8. a) Compute the derivative of the function $f(x)=\frac{1}{\sqrt{x^{2}+a^{2}+b^{2}}}$, where $a, b \in \mathbb{R}$ are parameters.
b) Where is the function increasing?
9. a) Compute the derivative of the function $f(y)=a^{2}+a\left(\sin y-y^{4}\right)$, where $a \in \mathbb{R}$ is a parameter.
b) Decide if the function is decreasing or increasing in the neighborhood of point $y_{0}=0$.
10. Compute the derivative of the function $f(y)=a e^{a y^{2}}+b^{5} y^{-4}$, where $a, b \in \mathbb{R}$ are parameters.

Partial derivatives

11. Find a domain of definition of following functions (and sketch it), compute all partial derivatives:
(a) $f(x, y)=\sqrt{2 x-y}$
(b) $f(x, y)=x^{2}+y^{3}-2 y^{2}-4 x y$
(c) $f(x, y)=x e^{y}+x^{2}-2 y^{2}-2$
(d) $f(x, y)=\ln \left(x-y^{2}\right)$
(e) $f(x, y)=3 \cos (4 y) \sin (x)-\sin (2 x)$
(f) $f(x, y)=\sqrt{x y}$
(g) $f(x, y)=\ln \left(9-x^{2}-9 y^{2}\right)$
(h) $f(x, y)=x^{y}$
(i) $f(x, y, z)=\sqrt{x}+\sqrt{y}+\sqrt{z}$
(j) $f(x, y, z)=x z-5 x^{2} y^{3} z^{4}$
12. To given function $f(x, y, z, t)=x^{2} y \cos \left(\frac{z}{t}\right)$ find the $\frac{\partial f}{\partial t}$.
13. Compute all partial derivatives of $f(x, y, z)=x \sin (y-z)$ in a point $A=[1 ; 0 ; 0]$. What does these values mean?
14. Compute all partial derivatives of $f(x, y, z)=z e^{x y z}$ in a point $A=[0 ; 2 ;-1]$. What does these values mean?
15. a) Compute all partial derivatives of $f(x, y)=\ln (2 x-y)+3 x^{3}-x y$ in a point $A=[1 ; 1]$. b) Write a tangent line of the function in a cut $x \equiv 1$ in tangent point A .
