Limits

- 1. (a) Find a candidate for a limit $\lim_{[x,y]\to[0;0]} \frac{1}{\sqrt{x^2+y^2}}$
 - (b)* Can you prove (in this special case) that the candidate is the only possibility?
- 2. (a) Find a candidate for a limit $\lim_{[x,y]\to[0,0]} \frac{\sin x \sin y}{xy}$
 - (b)* Can you prove (in this special case) that the candidate is the only possibility? hint: Remember what is true for multiplication of the limits from M1
- 3. (a) Find a candidate for a limit $\lim_{[x,y]\to\infty} (x^2+3y^2)e^{-x^2-y^2}$
 - (b)* Can you prove that the candidate is the only possibility?
- 4. (a) Find a candidate for a limit $\lim_{[x,y]\to[0;0]} \frac{x+y}{xy}$
 - (b) Prove that the limit doesn't exist. hint: Try different lines
- 5. Prove that the $\lim_{[x,y]\to[0;0]} \frac{xy^2}{x^2+y^4}$ doesn't exist. hint: Try different parabolas
- 6. Decide if the following function is continuous in point [0; 0]:

$$f(x,y) = \left\langle \frac{2}{\frac{\sin(x^2+y^2)}{\sqrt{x^2+y^2+1}-1}} \right\rangle$$
 for $[x,y] = [0;0]$ elsewhere

Derivatives with parameters

- 7. Compute the derivative of the function $f(x) = \frac{1}{\tan(\frac{a}{x})}$, where $a \in \mathbb{R}$ is a parameter.
- 8. a) Compute the derivative of the function $f(x) = \frac{1}{\sqrt{x^2 + a^2 + b^2}}$, where $a, b \in \mathbb{R}$ are parameters.
 - b) Where is the function increasing?
- 9. a) Compute the derivative of the function $f(y) = a^2 + a(\sin y y^4)$, where $a \in \mathbb{R}$ is a parameter.
 - b) Decide if the function is decreasing or increasing in the neighborhood of point $y_0 = 0$.
- 10. Compute the derivative of the function $f(y) = ae^{ay^2} + b^5y^{-4}$, where $a, b \in \mathbb{R}$ are parameters.

Partial derivatives

11. Find a domain of definition of following functions (and sketch it), compute all partial derivatives:

1

- (a) $f(x,y) = \sqrt{2x y}$
- (b) $f(x,y) = x^2 + y^3 2y^2 4xy$
- (c) $f(x,y) = xe^y + x^2 2y^2 2$
- (d) $f(x,y) = \ln(x y^2)$
- (e) $f(x,y) = 3\cos(4y)\sin(x) \sin(2x)$
- (f) $f(x,y) = \sqrt{xy}$
- (g) $f(x,y) = \ln(9 x^2 9y^2)$
- (h) $f(x,y) = x^y$
- (i) $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z}$
- (j) $f(x, y, z) = xz 5x^2y^3z^4$
- 12. To given function $f(x, y, z, t) = x^2 y \cos(\frac{z}{t})$ find the $\frac{\partial f}{\partial t}$.

- 13. Compute all partial derivatives of $f(x, y, z) = x \sin(y z)$ in a point A = [1; 0; 0]. What does these values mean?
- 14. Compute all partial derivatives of $f(x, y, z) = ze^{xyz}$ in a point A = [0; 2; -1]. What does these values mean?
- 15. a) Compute all partial derivatives of $f(x,y) = \ln(2x y) + 3x^3 xy$ in a point A = [1,1].
 - b) Write a tangent line of the function in a cut $x \equiv 1$ in tangent point A.