(implicitly defined functions)

1. Verify that by the equation $x z^{2}-x^{2} y+y^{2} z+2 x-y=0$ is implicitly defined function $z=f(x, y)$ near the point $A=[0 ; 1 ; 1]$.
Find a direction in which is the function $z=f(x, y)$ increasing the most at point $[0 ; 1]$.

Local extrema

2. Given $f(x, y)=x^{2} y+\cos y+y \sin x$,

Find all partial derivatives of first and second order. Decide if the origin $(O=[0 ; 0])$ is the critical point of the function f (verify). Find the Hessian matrix in this point.
3. Given $f(x, y)=x^{y}$,

Find all partial derivatives of first and second order. Decide if $P=[1 ; 1]$ is the critical point of the function f (verify).
4. Find the local extrema of the function $f(x, y)=\ln \left(1-x^{2}-y^{2}\right)$, i.e. find their position, type and value.
5. Find the local extrema of the function $f(x, y)=2 x y-5 x^{2}-2 y^{2}+4 x+4 y$, i.e. find their position, type and value.
6. Find the local extrema of the function $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}-8$, i.e. find their position, type and value.
7. Determine if the function $f(x, y)=4 x y-x^{4}-y^{4}-11$ has local extremes at points $A_{0}=[0 ; 0]$ or $A_{1}=[1 ; 1]$. If the answer is YES, find its type and value.
8. Has the function $f(x, y)=e^{x} \cos y$ local extrema?
9. Find all critical points of the function $f(x, y)=y \cos x$.

