(directional derivative)

- 1. Given $f(x, y, z) = x^2 2y^2 3z^3 17$ and a point A = [1; 1; 1], compute the directional derivative of f at point A in the direction given by a vector $\vec{s} = (1; 1; 1)$. What can you say about the function in this direction?
- 2. Given $f(x, y, z) = x^3y + \frac{x}{y^2} + 2z$ and a point A = [-1; 1; 0],
 - a) determine the direction \vec{s} in which is the directional derivative at point A maximal.
 - b) Compute the derivative in this direction (\vec{s}) at point A.

Chain rule (derivatives of composite functions)

- 3. Given $f(u, v) = u^2 \ln v$, compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when you know that $u(x, y) = \frac{x}{y}$ and v(x, y) = 3x 2y.
- 4. Given unknown function z(x,y)=f(u,v)=f(u(x,y),v(x,y)) and functions $u(x,y)=x^2-y^2$, $v(x,y)=e^{xy}$. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at point A=[1;2] when you know (from physics) that $\frac{\partial f}{\partial u}(A)=1$ and $\frac{\partial f}{\partial v}(A)=0$.

Implicitly defined functions

- 5. Given $F(x,y) = x^3 + y^3 6xy + 4$, verify that by the equation F(x,y) = 0 is implicitly defined function y = f(x) near the point A = [1;1]. Compute its derivative $\frac{\mathrm{d}f}{\mathrm{d}x}$ at point $x_0 = 1$ and find an equation of tangent to the graph of f(x).
- 6. Verify that by equation x³y + y³x + x²y 3 = 0 is implicitly defined function y = f(x) near the point A = [1; 1].
 Compute its derivative df/dx at point x₀ = 1 and find an equation of normal to the graph of f(x).
- 7. Given $F(x,y) = \sin(x+y) y^2 \cos x$, verify that by the equation F(x,y) = 0 is implicitly defined function y = f(x) in the neighborhood of the point $A = [\pi; 0]$.

 Compute its derivative $\frac{\mathrm{d}f}{\mathrm{d}x}$ at point $x_0 = \pi$ and describe the behavior of f(x) near point A (is it increasing or decreasing, how fast?).
- 8. Given $F(x,y) = x^3 + 2x^2y + y^4$ verify that by the equation F(x,y) = 1 is implicitly defined function y = f(x) near the point A = [2; -1].

 Compute the first and the second derivative of f at point $x_0 = 2$.