(Triple integrals - generalized cylindrical coordinates)

0 . Given a body: $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq z \leq 1 \wedge 0 \leq y \leq x \wedge \frac{x^{2}}{3}+y^{2} \leq 1\right\}$.
(a) Transfer the following integral to generalized cylindrical coordinates:

$$
\iiint_{M} 1 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z .
$$

(b) Compute the integral.
(c) Write one possible physical meaning of the integral.

Triple integrals: spheres and spherical coords.

1. Given a body: $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 1 \leq z \leq \sqrt{9-x^{2}-y^{2}}\right\}$. Sketch (in cuts) the body and compute its volume.
2. Given a body: $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 1 \leq x^{2}+y^{2}+z^{2} \leq 9 \wedge z \geq 0\right\}$.
(a) Transfer the following integral to spherical coordinates:

$$
\iiint_{M} \sqrt{x^{2}+y^{2}+z^{2}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z .
$$

(b) Compute the integral.
3. Compute mass of a body $M=\left\{[x, y, z] \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 4 \wedge x \geq 0\right\}$ for $\rho(x, y, z)=x^{2}+y^{2}$.
4. Compute volume of the body $M=\left\{[x, y, z] \in \mathbb{R}^{3}: \sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{1-x^{2}-y^{2}}\right\}$
5. Sketch (in cuts) a body $M=\left\{[x, y, z] \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 16 \wedge x^{2}+y^{2} \leq 9\right\}$. Compute its volume.
6. Compute the center of mass of a half-ball with radius $\mathrm{R}=1$ which is homogenenous ($\rho=$ const.) $\left[z_{C}=\frac{3}{8}\right]$

