Repetition - \iint_{σ}

1. Given surface $\sigma=\left\{[x, y, z] \in \mathrm{R}^{3}: z=\sqrt{4-x^{2}-y^{2}} \wedge x^{2}+y^{2} \leq 1\right\}$.
(a) Sketch the surface σ and its projection to $x y$ plane. Write down the parametrization of σ.
(b) Compute $\iint_{\sigma} z^{3} \mathrm{~d} p$.
2. Given surface $\sigma=\left\{[x, y, z] \in\langle 0 ; 1\rangle \times\langle-1 ; 1\rangle \times \mathrm{R}: z=x^{2}+y\right\}$.
(a) Write down the parametrization of σ.
(b) Compute the statical moment about the $x y$-plane when $\rho(x, y, z)=\frac{1}{\sqrt{4 z-4 y+2}}$.
3. Given surface $\sigma=\left\{[x, y, z] \in \mathrm{R}^{3}: z=4-x^{2}-y^{2} \wedge z \geq 0\right\}$ oriented by a normal vector with positive z-coordinate.
(a) Sketch the surface σ and its projection to $x y$ plane. Find a suitable parametrization of σ including the corresponding range of parameters.
(b) Compute $\iint_{\sigma}(2 x, 2 y, 2 z) \cdot \overrightarrow{\mathrm{d} p}$.
4. Given surface $Q=\left\{[x, y, z] \in \mathrm{R}^{3}: z=1+x^{2}+y^{2} \wedge z \leq 2\right\}$ oriented by a normal vector with positive z-coordinate.
(a) Sketch the surface Q and its projection to $x y$ plane. Find a suitable parametrization of σ including the corresponding range of parameters.
(b) Compute flux of the vector field $\vec{f}(x, y, z)=(y,-x, 1+z)$ through Q.
5. (a) Write down the divergence theorem (Gauss-Ostrogradsky) and check the assumptions for the flux of the field $\vec{f}(x, y, z)=\left(x^{3}, y^{3}, z\right)$ through surface of a body $\Omega=\left\{[x, y, z] \in \mathrm{R}^{3}: x^{2}+y^{2} \leq 1 \wedge 0 \leq z \leq 2-\sqrt{x^{2}+y^{2}}\right\}$.
The surface is oriented with a normal heading inside.
(b) Compute the given flux.

Results

1. (a) $\left\|P_{u} \times P_{v}\right\|=\frac{4 u}{\sqrt{4-u^{2}}}$ (b) 14π
2. (a) $\left\|P_{u} \times P_{v}\right\|=\sqrt{4 u^{2}+2}$ (b) $2 / 3$
3. (b) 48π
4. (b) $\frac{5}{2} \pi$
5. (a) like a hut (b) $-\frac{46}{15} \pi$
