Repetition - \iint_{σ}

- 1. Given surface $\sigma = \{ [x, y, z] \in \mathbb{R}^3 : z = \sqrt{4 x^2 y^2} \land x^2 + y^2 \le 1 \}.$
 - (a) Sketch the surface σ and its projection to xy plane. Write down the parametrization of σ .
 - (b) Compute $\iint_{\sigma} z^3 dp$.
- 2. Given surface $\sigma = \{ [x, y, z] \in \langle 0; 1 \rangle \times \langle -1; 1 \rangle \times \mathbf{R} : z = x^2 + y \}.$
 - (a) Write down the parametrization of σ .
 - (b) Compute the statical moment about the xy-plane when $\rho(x, y, z) = \frac{1}{\sqrt{4z-4y+2}}$.
- 3. Given surface $\sigma = \{[x, y, z] \in \mathbb{R}^3 : z = 4 x^2 y^2 \land z \ge 0\}$ oriented by a normal vector with positive z-coordinate.
 - (a) Sketch the surface σ and its projection to xy plane. Find a suitable parametrization of σ including the corresponding range of parameters.
 - (b) Compute $\iint_{\sigma} (2x, 2y, 2z) \cdot \vec{dp}$.
- 4. Given surface $Q = \{[x, y, z] \in \mathbb{R}^3 : z = 1 + x^2 + y^2 \land z \leq 2\}$ oriented by a normal vector with positive z-coordinate.
 - (a) Sketch the surface Q and its projection to xy plane. Find a suitable parametrization of σ including the corresponding range of parameters.
 - (b) Compute flux of the vector field $\vec{f}(x, y, z) = (y, -x, 1+z)$ through Q.
- 5. (a) Write down the divergence theorem (Gauss-Ostrogradsky) and check the assumptions for the flux of the field $\vec{f}(x, y, z) = (x^3, y^3, z)$ through surface of a body $\Omega = \{ [x, y, z] \in \mathbb{R}^3 : x^2 + y^2 \leq 1 \land 0 \leq z \leq 2 - \sqrt{x^2 + y^2} \}.$ The surface is oriented with a normal heading inside.
 - (b) Compute the given flux.

Results

- 1. (a) $||P_u \times P_v|| = \frac{4u}{\sqrt{4-u^2}}$ (b) 14π
- 2. (a) $||P_u \times P_v|| = \sqrt{4u^2 + 2}$ (b) 2/3
- 3. (b) 48π
- 4. (b) $\frac{5}{2}\pi$
- 5. (a) like a hut (b) $-\frac{46}{15}\pi$