Repetition - \int_{C}

1. Compute the work done by a vector field $\vec{f}(x, y)=\left(x y^{2}, 2 x^{2} y\right)$ along the curve which is positively oriented boundary of a triangle $\mathrm{M}=[0 ; 0], \mathrm{N}=[2 ; 2], \mathrm{O}=[2 ; 4]$.
2. A curve is given as a line segment from $E=[1 ; 0 ; 2]$ to $F=[1 ; 2 ; 1]$.
(a) Compute its mass when $\rho(x, y, z)=x^{2}+y^{2}$.
(b) For the given potential $\varphi(x, y, z)=x^{2} y+2 y^{4} z$ find the corresponding vector field and compute its work done along the curve.
3. Given a conservative vector field $\vec{f}(x, y)=(\sqrt{x}+y, \sqrt{y}+x)$.
(a) Find the potential of the vector field (determine where it is possible).
(b) Compute $\int_{C} \vec{f} \cdot \overrightarrow{\mathrm{~d} s}$ where $C=\left\{[x, y] \in \mathrm{R}^{2}: y=x^{2} \wedge 1 \leq x \leq 2\right\}$.
4. A curve is given as a segment of function $y=\tan x$ for $x \in\left\langle 0 ; \frac{\pi}{4}\right\rangle$.
(a) Suggest its parametrization, compute the tangent vector and determine its length.
(b) Compute line integral of a scalar function $f(x, y)=4 \cos ^{5} x \sin x$.
(c) Compute line integral of a vector function $\vec{g}(x, y)=\left(x, \cos ^{3} x\right)$.
5. Given an incomplete potential $\varphi(x, y)=2 x y^{3 / 2}+K(y)$, containing an unknown function $K(y)$ depending just on one variable (y). The corresponding conservative/potential vector field is $\vec{f}(x, y)=(U(x, y) ; V(x, y))$, where $V(x, y)=3 x \sqrt{y}+y$.
(a) From the definition of potential determine the component U of the given vector field \vec{f}.
(b) Finish the computation of potential $\varphi(x, y)$ by finding the unknown function $K(y)$.
(c) Find the domain where the vector field $\vec{f}(x, y)$ is conservative.
(d) Compute the work done by the force \vec{f} acting along the oriented line segment C from the point $A=[1 ; 0]$ to the point $B=[3 ; 4]$.
6. Compute the circulation of a vector field $\vec{f}(x, y)=(x+y, x-y)$ along a positively oriented circle $x^{2}+y^{2}=4$.

Results

1. $\mathrm{W}=12$
2. (a) $\frac{7}{3} \sqrt{5}$ (b) $f(x, y, z)=\left(2 x y, x^{2}+8 y^{3} z, 2 y^{4}\right)$, $\mathrm{W}=34$
3. (a) $\varphi(x, y)=\frac{2}{3}\left(\sqrt{x^{3}}+\sqrt{y^{3}}\right)+x y+C$, (for $\left.x>0, y>0\right)$ (b) $\frac{4 \sqrt{2}}{3}+11$
4. (a) $\|\dot{P}(t)\|=\frac{\sqrt{\cos ^{4} t+1}}{\cos ^{2} t}$ (b) $\frac{5 \sqrt{5}+16 \sqrt{2}}{12}$ (c) $\frac{\pi^{2}}{32}+\frac{\sqrt{2}}{2}$
5. (a) $U(x, y)=2 \sqrt{y^{3}}$ (b) $K(y)=y^{2} / 2+C$ (c) $\left\{[x, y] \in \mathrm{R}^{2} ; y>0\right\}$ (d) 56
6. 0
