Repetition - \iint and \iiint

- 1. Given $\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_0^1 \int_1^{x+1} e^x \, \mathrm{d}y \, \mathrm{d}x$
 - (a) Write down and sketch the domain D.
 - (b) Reverse the order of integration.
 - (c) Evaluate the given integral.
- 2. Given prismatic body $M = \{ [x, y, z] \in \mathbb{R}^3 : 0 \le z \le 2 2x \land 0 \le y \le 2 \land 0 \le x \le ? \}.$
 - (a) Sketch the projection of M to xy-plane and determine the upper limit for x.
 - (b) Compute $\iiint_M z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$.
 - (c) Give at least two examples of physical meaning of integral from (b).
- 3. Given a body $M = \{ [x, y, z] \in \mathbb{R}^3 : 0 \le z \le x^2 + y^2 + 2 \land 0 \le y \le 2 \land 0 \le x \le 1 \}.$
 - (a) Sketch the projection of M to xy-plane and the cut by plane y = 0.
 - (b) Compute $\iiint_M x \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$.
 - (c) Give at least two examples of physical meaning of integral from (b).
- 4. (a) Sketch bounded domain $D \in \mathbb{R}^2$ with boundary: $y = \sqrt{x}$ and y = x.
 - (b) Compute $\iint_D x^2 y \, \mathrm{d}x \, \mathrm{d}y$.
- (a) Sketch a body Ω ∈ R³ bounded by surfaces: 16x² + 4y² = 64, z = 0 and z = 2.
 (b) Compute the mass of the body if the density ρ(x, y, z) = y²z.
- 6. (a) Sketch a body $\Omega = \{[x, y, z] \in \mathbb{R}^3 : x^2 + y^2 \le 1 \land 0 \le z \le 1 x\}.$ (b) Compute the volume of the body.

Results

- 1. (b) $\int_{1}^{2} \int_{y-1}^{1} e^x \, dx \, dy$ (c)=1
- 2. (a) $0 \le x \le 1$ (b) $\frac{4}{3}$ (c) mass, $\rho = z$, or static moment m_{xy} , $\rho = 1$
- 3. (b) 23/6 (c) mass, $\rho = x$, or static moment m_{yz} , $\rho = 1$
- 4. (b) 1/40
- 5. (b) $m = 32\pi$
- 6. (b) $V = \pi$