Repetition - \iint and \iiint

1. Given $\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{1}^{x+1} e^{x} \mathrm{~d} y \mathrm{~d} x$
(a) Write down and sketch the domain D.
(b) Reverse the order of integration.
(c) Evaluate the given integral.
2. Given prismatic body $M=\left\{[x, y, z] \in \mathrm{R}^{3}: 0 \leq z \leq 2-2 x \wedge 0 \leq y \leq 2 \wedge 0 \leq x \leq ?\right\}$.
(a) Sketch the projection of M to $x y$-plane and determine the upper limit for x.
(b) Compute $\iiint_{M} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$.
(c) Give at least two examples of physical meaning of integral from (b).
3. Given a body $M=\left\{[x, y, z] \in \mathrm{R}^{3}: 0 \leq z \leq x^{2}+y^{2}+2 \wedge 0 \leq y \leq 2 \wedge 0 \leq x \leq 1\right\}$.
(a) Sketch the projection of M to $x y$-plane and the cut by plane $y=0$.
(b) Compute $\iiint_{M} x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$.
(c) Give at least two examples of physical meaning of integral from (b).
4. (a) Sketch bounded domain $D \in \mathrm{R}^{2}$ with boundary: $y=\sqrt{x}$ and $y=x$.
(b) Compute $\iint_{D} x^{2} y \mathrm{~d} x \mathrm{~d} y$.
5. (a) Sketch a body $\Omega \in \mathrm{R}^{3}$ bounded by surfaces: $16 x^{2}+4 y^{2}=64, z=0$ and $z=2$.
(b) Compute the mass of the body if the density $\rho(x, y, z)=y^{2} z$.
6. (a) Sketch a body $\Omega=\left\{[x, y, z] \in \mathrm{R}^{3}: x^{2}+y^{2} \leq 1 \wedge 0 \leq z \leq 1-x\right\}$.
(b) Compute the volume of the body.

Results

1. (b) $\int_{1}^{2} \int_{y-1}^{1} e^{x} \mathrm{~d} x \mathrm{~d} y(\mathrm{c})=1$
2. (a) $0 \leq x \leq 1$ (b) $\frac{4}{3}$ (c) mass, $\rho=z$, or static moment $m_{x y}, \rho=1$
3. (b) $23 / 6$ (c) mass, $\rho=x$, or static moment $m_{y z}, \rho=1$
4. (b) $1 / 40$
5. (b) $m=32 \pi$
6. (b) $V=\pi$
