Repetition - dif. calculus

1. Given $f(x, y) = \sqrt{1 + xy^2}$.

- (a) Where is the function differentiable?
- (b) $\vec{s} = \vec{AB}$ where A = [2;-2] and B = [5;2]. Find a directional derivative $\frac{\partial f}{\partial \vec{s}}(A)$.
- (c) Find a directional derivative of f(x, y) in the point A in the direction of maximum grow.
- (d) Find an equation of a tangent plane to the graph of the function in the point A.
- 2. (a) Is $u(x,y) = e^{-x} \cos y e^{-y} \cos x$ a solution of the Laplace equation

$$u_{xx} + u_{yy} = 0 ?$$

- (b) Find local extrema of $f(x, y) = x^2 + xy y^2 6 \ln x$, determine its type and position.
- 3. (a) Find local extrema of $f(x, y) = 2y y^2 xe^x$.
 - (b) Find absolute (global) extrema of $g(x, y) = xy x^2 + 3y^2 4y$ on a set $M = \{x, y \in \mathbb{R}^2 : y = 1 - x \land -1 \le x \le 1\}.$
- 4. (a) Find partial derivatives of 1^{st} order: $g(x,y) = \left(\frac{x^3}{2} + \frac{2}{y^3}\right)e^{2x}$.
 - (b) By the equation $F(x, y) = \frac{x^2}{2} + y^3 xy 1 = 0$ is around the point A = [2; 1] implicitly define function y = f(x), verify.
 - (c) Find the Taylor's polynomial of 2^{nd} order for the function y = f(x) in the neighbourhood of $x_0 = 2$. Use the result to approximate f(1.8).
- 5. By the equation $F(x, y) = x^2 xy + 2y^2 + x y 1 = 0$ is around the point A = [0, 1] implicitly define function y = f(x).
 - (a) Verify that the y = f(x) has continuous first and second derivative.
 - (b) Find y'(0) and y''(0). Is the point $x_0 = 0$ a local extreme of y = f(x)?
 - (c) Write a tangent line and a normal to the graph of y = f(x) in the tangent point A.
- 6. By the equation $F(x, y, z) = x^3 + y^3 + z^3 + xyz 6 = 0$ is around the point T = [1; 2; -1] implicitly define function z = f(x, y).
 - (a) Verify that z = f(x, y) has continuous P.D. in $T_0 = [1; 2]$ and compute them.
 - (b) For the direction $\vec{u} = (-1; 2)$ compute $\frac{\partial f}{\partial \vec{u}}(T_0)$.
 - (c) Compute total differential of z = f(x, y) in T_0 .

Results

- 1. (a) diff. on $\Omega = \{x, y \in \mathbb{R}^2 : 1 + xy^2 > 0\}$ (b) -2/3 (c) $\frac{2\sqrt{5}}{3}$ (d) $z 3 = \frac{2}{3}(x 2) \frac{4}{3}(y + 2)$ 2. (a) yes (b) no extrema $([2\sqrt{\frac{3}{5}}; \sqrt{\frac{3}{5}}]$ is a saddle p.)
- 3. (a) $1 + \frac{1}{e}$ is loc. max. in [-1;1] (b) $-\frac{5}{4}$ is min. in $\left[\frac{1}{2};\frac{1}{2}\right]$ and 1 is max. in [-1;2]
- 4. (a) $g_x = 2e^{2x}(\frac{3x^2}{4} + \frac{x^3}{2} \frac{2}{y^3}), g_y = -e^{2x}\frac{6}{y^4}$ (b) $T_2(x) = 1 1(x-2) \frac{9}{2}(x-2)^2, f(1.8) \doteq 0.84$
- 5. (b) $y'(0) = 0, y''(0) = -\frac{2}{3}$; 1 is loc. max. in x_0 (c) $\tau : y = 1, \nu : x = 0$
- 6. (a) $z_x(T_0) = -\frac{1}{5}, z_y(T_0) = -\frac{11}{5}$ (b) $21\sqrt{5}$ (c) $df = -\frac{1}{5}dx \frac{11}{5}dy$