Repetition - dif. calculus

1. Given $f(x, y)=\sqrt{1+x y^{2}}$.
(a) Where is the function differentiable?
(b) $\vec{s}=\overrightarrow{A B}$ where $\mathrm{A}=[2 ;-2]$ and $\mathrm{B}=[5 ; 2]$. Find a directional derivative $\frac{\partial f}{\partial \vec{s}}(A)$.
(c) Find a directional derivative of $f(x, y)$ in the point A in the direction of maximum grow.
(d) Find an equation of a tangent plane to the graph of the function in the point A .
2. (a) Is $u(x, y)=e^{-x} \cos y-e^{-y} \cos x$ a solution of the Laplace equation

$$
u_{x x}+u_{y y}=0 ?
$$

(b) Find local extrema of $f(x, y)=x^{2}+x y-y^{2}-6 \ln x$, determine its type and position.
3. (a) Find local extrema of $f(x, y)=2 y-y^{2}-x e^{x}$.
(b) Find absolute (global) extrema of $g(x, y)=x y-x^{2}+3 y^{2}-4 y$ on a set $M=\left\{x, y \in \mathbb{R}^{2}: y=1-x \wedge-1 \leq x \leq 1\right\}$.
4. (a) Find partial derivatives of $1^{\text {st }}$ order: $g(x, y)=\left(\frac{x^{3}}{2}+\frac{2}{y^{3}}\right) e^{2 x}$.
(b) By the equation $F(x, y)=\frac{x^{2}}{2}+y^{3}-x y-1=0$ is around the point $A=[2 ; 1]$ implicitly define function $y=f(x)$, verify.
(c) Find the Taylor's polynomial of $2^{\text {nd }}$ order for the function $y=f(x)$ in the neighbourhood of $x_{0}=2$. Use the result to approximate $f(1.8)$.
5. By the equation $F(x, y)=x^{2}-x y+2 y^{2}+x-y-1=0$ is around the point $A=[0 ; 1]$ implicitly define function $y=f(x)$.
(a) Verify that the $y=f(x)$ has continuous first and second derivative.
(b) Find $y^{\prime}(0)$ and $y^{\prime \prime}(0)$. Is the point $x_{0}=0$ a local extreme of $y=f(x)$?
(c) Write a tangent line and a normal to the graph of $y=f(x)$ in the tangent point A .
6. By the equation $F(x, y, z)=x^{3}+y^{3}+z^{3}+x y z-6=0$ is around the point $T=[1 ; 2 ;-1]$ implicitly define function $z=f(x, y)$.
(a) Verify that $z=f(x, y)$ has continuous P.D. in $T_{0}=[1 ; 2]$ and compute them.
(b) For the direction $\vec{u}=(-1 ; 2)$ compute $\frac{\partial f}{\partial \vec{u}}\left(T_{0}\right)$.
(c) Compute total differential of $z=f(x, y)$ in T_{0}.

Results

1. (a) diff. on $\Omega=\left\{x, y \in \mathbb{R}^{2}: 1+x y^{2}>0\right\}(\mathrm{b})-2 / 3$ (c) $\frac{2 \sqrt{5}}{3}$ (d) $z-3=\frac{2}{3}(x-2)-\frac{4}{3}(y+2)$
2. (a) yes (b) no extrema $\left(\left[2 \sqrt{\frac{3}{5}} ; \sqrt{\frac{3}{5}}\right]\right.$ is a saddle p.)
3. (a) $1+\frac{1}{e}$ is loc. max. in $[-1 ; 1]$ (b) $-\frac{5}{4}$ is min. in $\left[\frac{1}{2} ; \frac{1}{2}\right]$ and 1 is max. in $[-1 ; 2]$
4. (a) $g_{x}=2 e^{2 x}\left(\frac{3 x^{2}}{4}+\frac{x^{3}}{2}-\frac{2}{y^{3}}\right), g_{y}=-e^{2 x} \frac{6}{y^{4}}\left(\right.$ b) $T_{2}(x)=1-1(x-2)-\frac{9}{2}(x-2)^{2}, f(1.8) \doteq 0.84$
5. (b) $y^{\prime}(0)=0, y^{\prime \prime}(0)=-\frac{2}{3}$; 1 is loc. max. in $x_{0}($ c) $\tau: y=1, \nu: x=0$
6. (a) $z_{x}\left(T_{0}\right)=-\frac{1}{5}, z_{y}\left(T_{0}\right)=-\frac{11}{5}$ (b) $21 \sqrt{5}$ (c) $d f=-\frac{1}{5} d x-\frac{11}{5} d y$
