(implicitly defined functions)

1. Given $F(x, y)=\sin (x+y)-y^{2} \cos x$,
verify that by the equation $F(x, y)=0$ is implicitly defined function $y=f(x)$ in the neighborhood of the point $A=[\pi ; 0]$.
Compute its derivative $\frac{\mathrm{d} f}{\mathrm{~d} x}$ at point $x_{0}=\pi$ and describe the behavior of $f(x)$ near point A (is it increasing or decreasing, how fast?).
2. Given $F(x, y)=x^{3}+y^{3}-2 x^{2}-x y+1$,
verify that by the equation $F(x, y)=0$ is implicitly defined function $y=f(x)$ near the point $A=[1 ;-0]$.
Compute the first and the second derivative of $y=f(x)$ at point $x_{0}=1$ and describe the behavior of $y=f(x)$ near point A (is it increasing or decreasing, convex or concave?).
3. Given $F(x, y)=x^{3}+2 x^{2} y+y^{4}$,
verify that by the equation $F(x, y)=1$ is implicitly defined function $y=f(x)$ near the point $A=[2 ;-1]$.
Compute the first and the second derivative of $y=f(x)$ at point $x_{0}=2$. Approximate the function $y=f(x)$ by the second degree Taylor's polynomial.
4. a) Find equation of an iso-curve for $F(x, y)=x y e^{x-y}$ at point $P=[1 ; 2]$.
b) Find a tangent line to this iso-curve at point P.
c) Near the point P approximate the iso-curve by second degree Taylor's polynomial.
5. Given $F(x, y)=\ln (x y+4)-2 \ln 2$ and a point $A=[0 ; 2]$.

Can the equation $F(x, y)=0$ defined correctly the implicitly defined function $y=f(x)$ near the point A ?
If not, suggest how to compute tangent to the iso-curve $F(x, y)=0$. (hint: switch the variables)
6. Given $F(x, y, z)=x^{3}+y^{3}+z^{3}+x y z-6$,
a) verify that by the equation $F(x, y, z)=0$ is implicitly defined function $z=f(x, y)$ near the point $A=[1 ; 2 ;-1]$.
b) Compute all the partial derivatives of $z=f(x, y)$ at point $T=[1 ; 2]$.
c) Find an equation of the tangent plain which is tangent to the graph of $z=f(x, y)$ at tangent point A.
7. Verify that by the equation $x z^{2}-x^{2} y+y^{2} z+2 x-y=0$ is implicitly defined function $z=f(x, y)$ near the point $A=[0 ; 1 ; 1]$.
Find an equation of the tangent plain which is tangent to the graph of $z=f(x, y)$ at tangent point A.

