(directional derivative)

- 1. Given $f(x, y) = \sqrt{9 x^2 y^2}$ and a point A = [1; -2], a) compute gradient of the function at point A. b) Find the direction vector \vec{u} in which the function doesn't change its value.
- 2. Given $f(x, y, z) = x^2 2y^2 3z^3 17$ and a point A = [1; 1; 1], compute the directional derivative of f at point A in the direction given by a vector $\vec{s} = (1; 1; 1)$. What can you say about the function in this direction?
- 3. Given $f(x, y, z) = x^3y + \frac{x}{y^2} + 2z$ and a point A = [-1; 1; 0], a) determine the direction \vec{s} in which is the directional derivative at point A maximal. b) Compute the derivative in this direction (\vec{s}) at point A.

Chain rule (derivatives of composite functions)

- 4. Given $f(u,v) = u^2 \ln v$, compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when you know that $u(x,y) = \frac{x}{y}$ and v(x, y) = 3x - 2y.
- 5. Given unknown function z(x,y) = f(u,v) = f(u(x,y), v(x,y)) and functions $u(x,y) = x^2 y^2$, $v(x,y) = e^{xy}$. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at point A = [1;2] when you know (from physics) that $\frac{\partial f}{\partial u}(A) = 1$ and $\frac{\partial f}{\partial v}(A) = 0$.
- 6. Prove that the function $z(x,y) = f(\frac{y}{x})$ solve an equation

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$$

hint: define function $u(x, y) = \frac{y}{x}$

7. From equation of state (for perfect gas)

$$p(t) = C \frac{T(t)}{V(t)},$$

where $C \in \mathbb{R}$ is a const., $T(t) = \ln t$ and $V(t) = \sqrt{t}$, compute the derivative $\frac{dp}{dt}$ in time $t_0 = 1$.

Implicitly defined functions

- 8. Given $F(x, y) = x^3 + y^3 6xy + 4$, verify that by the equation F(x, y) = 0 is implicitly defined function y = f(x) near the point A = [1; 1]. Compute its derivative $\frac{df}{dx}$ at point $x_0 = 1$ and find an equation of tangent to the graph of f(x).
- 9. Verify that by equation $x^3y + y^3x + x^2y 3 = 0$ is implicitly defined function y = f(x) near the point A = [1; 1]. Compute its derivative $\frac{df}{dx}$ at point $x_0 = 1$ and find an equation of normal to the graph of f(x).
- 10. Given $F(x, y) = \sin(x + y) y^2 \cos x$, verify that by the equation F(x, y) = 0 is implicitly defined function y = f(x) in the neighborhood of the point $A = [\pi; 0]$. Compute its derivative $\frac{df}{dx}$ at point $x_0 = \pi$ and describe the behavior of f(x) near point A (is it increasing or decreasing, how fast?).
- 11. Given $F(x, y) = x^3 + 2x^2y + y^4$ verify that by the equation F(x,y) = 1 is implicitly defined function y = f(x) near the point A = [2; -1].

Compute the first and the second derivative of f at point $x_0 = 2$.