(directional derivative)

1. Given $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ and a point $A=[1 ;-2]$,
a) compute gradient of the function at point A.
b) Find the direction vector \vec{u} in which the function doesn't change its value.
2. Given $f(x, y, z)=x^{2}-2 y^{2}-3 z^{3}-17$ and a point $A=[1 ; 1 ; 1]$, compute the directional derivative of f at point A in the direction given by a vector $\vec{s}=(1 ; 1 ; 1)$. What can you say about the function in this direction?
3. Given $f(x, y, z)=x^{3} y+\frac{x}{y^{2}}+2 z$ and a point $A=[-1 ; 1 ; 0]$,
a) determine the direction \vec{s} in which is the directional derivative at point A maximal.
b) Compute the derivative in this direction (\vec{s}) at point A.

Chain rule (derivatives of composite functions)

4. Given $f(u, v)=u^{2} \ln v$, compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when you know that $u(x, y)=\frac{x}{y}$ and $v(x, y)=3 x-2 y$.
5. Given unknown function $z(x, y)=f(u, v)=f(u(x, y), v(x, y))$ and functions $u(x, y)=x^{2}-y^{2}$, $v(x, y)=e^{x y}$. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at point $A=[1 ; 2]$ when you know (from physics) that $\frac{\partial f}{\partial u}(A)=1$ and $\frac{\partial f}{\partial v}(A)=0$.
6. Prove that the function $z(x, y)=f\left(\frac{y}{x}\right)$ solve an equation

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0 .
$$

hint: define function $u(x, y)=\frac{y}{x}$
7. From equation of state (for perfect gas)

$$
p(t)=C \frac{T(t)}{V(t)}
$$

where $C \in \mathbb{R}$ is a const., $T(t)=\ln t$ and $V(t)=\sqrt{t}$, compute the derivative $\frac{\mathrm{d} p}{\mathrm{~d} t}$ in time $t_{0}=1$.

Implicitly defined functions

8. Given $F(x, y)=x^{3}+y^{3}-6 x y+4$,
verify that by the equation $F(x, y)=0$ is implicitly defined function $y=f(x)$ near the point $A=[1 ; 1]$. Compute its derivative $\frac{\mathrm{d} f}{\mathrm{~d} x}$ at point $x_{0}=1$ and find an equation of tangent to the graph of $f(x)$.
9. Verify that by equation $x^{3} y+y^{3} x+x^{2} y-3=0$ is implicitly defined function $y=f(x)$ near the point $A=[1 ; 1]$.
Compute its derivative $\frac{\mathrm{d} f}{\mathrm{~d} x}$ at point $x_{0}=1$ and find an equation of normal to the graph of $f(x)$.
10. Given $F(x, y)=\sin (x+y)-y^{2} \cos x$,
verify that by the equation $F(x, y)=0$ is implicitly defined function $y=f(x)$ in the neighborhood of the point $A=[\pi ; 0]$.
Compute its derivative $\frac{\mathrm{d} f}{\mathrm{~d} x}$ at point $x_{0}=\pi$ and describe the behavior of $f(x)$ near point A (is it increasing or decreasing, how fast?).
11. Given $F(x, y)=x^{3}+2 x^{2} y+y^{4}$
verify that by the equation $F(x, y)=1$ is implicitly defined function $y=f(x)$ near the point $A=[2 ;-1]$.
Compute the first and the second derivative of f at point $x_{0}=2$.
