1. Decide if the following function is continuous in point [0; 0]:

$$f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{\sqrt{x^2 + y^2 + 1 - 1}} & \text{for} \quad [x,y] \in \mathcal{D}(f)\\ 2 & \text{for} \quad [x,y] = [0;0] \end{cases}$$

Derivatives with parameters

2. Compute the derivative of the function $f(x) = \frac{1}{\tan(\frac{a}{x})}$, where $a \in \mathbb{R}$ is a parameter.

- 3. a) Compute the derivative of the function $f(x) = \frac{1}{\sqrt{x^2 + a^2 + b^2}}$, where $a, b \in \mathbb{R}$ are parameters. b) Where is the function increasing?
- 4. a) Compute the derivative of the function f(y) = a² + a(sin y y⁴), where a ∈ ℝ is a parameter.
 b) Decide if the function is decreasing or increasing in the neighborhood of point y₀ = 0.
- 5. Compute the derivative of the function $f(y) = ae^{ay^2} + b^5y^{-4}$, where $a, b \in \mathbb{R}$ are parameters.

Partial derivatives

- 6. Find a domain of definition of following functions (and sketch it), compute all partial derivatives:
 - (a) $f(x,y) = \sqrt{2x y}$
 - (b) $f(x,y) = x^2 + y^3 2y^2 4xy$
 - (c) $f(x,y) = xe^y + x^2 2y^2 2$
 - (d) $f(x,y) = \ln(x-y^2)$
 - (e) $f(x,y) = 3\cos(4y)\sin(x) \sin(2x)$
 - (f) $f(x,y) = \sqrt{xy}$
 - (g) $f(x,y) = \ln(9 x^2 9y^2)$
 - (h) $f(x,y) = x^y$
 - (i) $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z}$
 - (j) $f(x, y, z) = xz 5x^2y^3z^4$
- 7. To given function $f(x, y, z, t) = x^2 y \cos(\frac{z}{t})$ find the $\frac{\partial f}{\partial t}$.
- 8. Compute all partial derivatives of $f(x, y, z) = x \sin(y z)$ in a point A = [1; 0; 0]. What does these values mean?
- 9. Compute all partial derivatives of $f(x, y, z) = ze^{xyz}$ in a point A = [0; 2; -1]. What does these values mean?
- 10. a) Compute all partial derivatives of $f(x, y) = \ln(2x y) + 3x^3 xy$ in a point A = [1; 1]. b) Write a tangent line of the function in a cut $x \equiv 1$ in tangent point A.