Domains of definition, iso-surface

1. Find a) a domain of definition of $f(x, y)=e^{\frac{1}{x-y}}$ and sketch it.
b) an equation of iso-curve (a level-curve) $f(x, y)=e^{2}$, simplify it and sketch it.
2. Find a) a domain of definition of $f(x, y)=\frac{\sin x y}{\sqrt{x y}}$ and sketch it.
b) an equation of iso-curves (a level-curves) $f(x, y)=0$, simplify it and sketch it.
3. Find a) a domain of definition of $f(x, y)=\ln \left(x^{2}+y^{2}-4\right)$ and sketch it.
b) an equation of iso-curve (a level-curve $f(x, y)=K$) which contains a point $[2 ; e]$ simplify it and sketch it.
4. Find a) the domain of definition for $f(x, y, z)=\sqrt{y-x^{2}} \ln z$.
b) Identify the iso-surface $f(x, y, z)=0$
5. Find a) the domain of definition for $f(x, y, z)=\frac{x}{\sqrt{y^{2}-z^{2}}}$.
b) Identify the iso-surface which contains a point $[-1 ; 1 ; 0]$
6. Find a) the domain of definition for $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
b) Identify the iso-surface $f(x, y, z)=\frac{1}{4}$

Limits

7. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{1}{\sqrt{x^{2}+y^{2}}}$
(b)* Can you prove (in this special case) that the candidate is the only possibility?
hint: Try the rotational symmetry
8. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{\sin x \sin y}{x y}$
(b)* Can you prove (in this special case) that the candidate is the only possibility?
hint: Remember what is true for multiplication of the limits from M1
9. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow \infty}\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$
(b)* Can you prove that the candidate is the only possibility?
10. (a) Find a candidate for a limit $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{x+y}{x y}$
(b) Prove that the limit doesn't exist. hint: Try different lines
11. Prove that the $\lim _{[x, y] \rightarrow[0 ; 0]} \frac{x y^{2}}{x^{2}+y^{4}}$ doesn't exist. hint: Try different parabolas
12. Decide if the following function is continuous in point $[0 ; 0]$:

