Nabla, 3D potential, divergence theorem

1. Given $\vec{f}(x, y, z)=\left(x y^{2}, x^{2}+2 z, 3 y z\right)$.
(a) $\operatorname{div} \vec{f}=\nabla \cdot \vec{f}=$?
(b) $\operatorname{rot} \vec{f}=\nabla \times \vec{f}=$?
(c) Is the field \vec{f} conservative?
2. Given $\vec{f}(x, y, z)=\left(2 x y^{3} z^{4}, 3 x^{2} y^{2} z^{4}, 4 x^{2} y^{3} z^{3}\right)$.
(a) $\operatorname{div} \vec{f}=\nabla \cdot \vec{f}=$?
(b) Where is the field \vec{f} conservative?
(c) Is the scalar function $\varphi(x, y, z)=x^{2} y^{3} z^{4}$ its potential?
3. Consider $\vec{f}(x, y, z)=(3 x, 2 y, 2 y+z)$ and a surface $\mathrm{Q}=$ shell of a body bounded by planes: $x=0, y=0, z=0, y=2$ and $x+z=1$. The surface is oriented with outer normal.

$$
\oiint_{Q} \vec{f} \cdot \overrightarrow{\mathrm{~d} p}=?
$$

[6]
4. Compute the flux of a vector field $\vec{f}(x, y, z)=\left(x+\cos x, y+e^{z}, z+z \sin x\right)$ through the surface of a body $\Omega=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq z \leq 4-x^{2}-y^{2}\right\}$.
The flux is heading outside (outer normal). $[\Phi=24 \pi]$
5. For a surface $\sigma=\left\{[x, y, z] \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=\underset{\rightarrow}{4} \wedge z \geq 0\right\}$, oriented by the normal which has positive third component, compute $\iint_{\sigma}\left(y, x, z^{2}\right) \cdot \overrightarrow{\mathrm{d}} p$. [$8 \pi]$

