Nabla, 3D potential, divergence theorem

- 1. Given $\vec{f}(x, y, z) = (xy^2, x^2 + 2z, 3yz)$.
 - (a) div $\vec{f} = \nabla \cdot \vec{f} = ?$
 - (b) rot $\vec{f} = \nabla \times \vec{f} = ?$
 - (c) Is the field \vec{f} conservative?
- 2. Given $\vec{f}(x, y, z) = (2xy^3z^4, 3x^2y^2z^4, 4x^2y^3z^3).$
 - (a) div $\vec{f} = \nabla \cdot \vec{f} = ?$
 - (b) Where is the field \vec{f} conservative?
 - (c) Is the scalar function $\varphi(x, y, z) = x^2 y^3 z^4$ its potential?
- 3. Consider $\vec{f}(x, y, z) = (3x, 2y, 2y + z)$ and a surface Q = shell of a body bounded by planes: x = 0, y = 0, z = 0, y = 2 and x + z = 1. The surface is oriented with outer normal.

$$\oint_Q \vec{f} \cdot \vec{dp} = ?$$

[6]

- 4. Compute the flux of a vector field $\vec{f}(x, y, z) = (x + \cos x, y + e^z, z + z \sin x)$ through the surface of a body $\Omega = \{[x, y, z] \in \mathbb{R}^3 : 0 \le z \le 4 - x^2 - y^2\}$. The flux is heading outside (outer normal). $[\Phi = 24\pi]$
- 5. For a surface $\sigma = \{[x, y, z] \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4 \land z \ge 0\}$, oriented by the normal which has positive third component, compute $\iint_{\sigma} (y, x, z^2) \cdot \vec{dp}$.

 $[8\pi]$