(Surface integral I)

- 1. For the surface $\sigma = \{ [x, y, z] \in \mathbb{R}^3 : 2x + 2y + z = 4 \land x, y, z \ge 0 \}$ compute $\iint xy \, dp$.
- 2. For the surface $\sigma = \{ [x, y, z] \in \mathbb{R}^3 : x^2 + y^2 = 4 \land 0 \le z \le 1 \}$ compute $\iint xy \, dp$.
- 3. Compute a mass of a metal sheet in a shape of $\sigma = \{[x, y, z] \in \mathbb{R}^3 : z = \sqrt{4 x^2 y^2}\}$ if $\rho(x, y, z) = z$.
- 4. Compute an area of a surface $\sigma = \{ [x, y, z] \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2} \land x^2 + y^2 \le 2x \}.$

Surface integral II

- 1. Surface $\sigma = \{[x, y, z] \in \mathbb{R}^3 : x, y \in \langle 0; a \rangle \land z = a; a > 0\}$ is oriented by normal \vec{n}_{σ} that has positive third (i.e. z) component.
 - (a) Find the parametrization and determine if it is oriented in agreement with the surface.
 - (b) Compute the surface integral $\iint (x, y, z) \cdot \vec{dp}$.
- 2. Consider a surface $Q = \{[x, y, z] \in \mathbb{R}^3 : x + 2y + z = 6 \land x, y, z \ge 0\}$ oriented by normal which makes an acute angle with $\hat{k} = (0, 0, 1)$ and a vector function $\vec{f}(x, y, z) = (z, y, 2x)$.
 - (a) Find the parametrization and determine if it is oriented in agreement with the surface.
 - (b) Compute the flux of a vector field \vec{f} through the oriented surface Q.
- 3. Consider a surface $\sigma = \{ [x, y, z] \in \mathbb{R}^3 : x^2 + y^2 = 16 \land x \le 0 \land y \ge 0 \land 0 \le z \le 1 \}$ oriented by normal $\vec{n}_{\sigma} = \hat{i} = (1, 0, 0)$ in a point [-4; 0; 0].
 - (a) Find the parametrization and determine if it is oriented in agreement with the surface.
 - (b) Compute the surface integral $\iint (y, z, x^2) \cdot \vec{dp}$.
- 4. For the surface $\sigma = \{ [x, y, z] \in \mathbb{R}^3 : z = x^2 + y^2 \land z \leq 9 \}$ oriented with outer normal compute

$$\iint_{\sigma} (x, 0, 2z) \, \vec{\mathrm{d}} p$$

5. Compute the flux of a vector field $\vec{f}(x, y, z) = (0, 0, z^2)$ through the surface $Q = \{ [x, y, z] \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4 \land x \leq 0 \land y, z \geq 0 \}$ oriented by normal which makes an acute angle with $\hat{k} = (0, 0, 1)$.