(Conservative fields, potential)

1. Determine a domain where \vec{f} is conservative and find its potential (if possible).
(a) $\vec{f}(x, y)=\left(x^{3} y^{2}+x, y^{2}+y x^{4}\right)$
(b) $\vec{f}(x, y)=\left(\ln y-\frac{e^{y}}{x^{2}}, \frac{e^{y}}{x}+\frac{x}{y}\right)$
2. To the given potential $\varphi(x, y)=x e^{x+y}$
(a) find the conservative \vec{f} (corresponding to φ).
(b) Compute $\int_{C} \vec{f} \cdot \overrightarrow{\mathrm{~d} s}$. where $C: x^{2}+y^{2}=1$ in a first quadrant, oriented counter-clockwise.
3. $\vec{f}(x, y)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)$.
(a) Where is \vec{f} conservative?
(b) Is $\varphi(x, y)=\sqrt{x^{2}+y^{2}}$ its potential?
(c) Compute the work done along a curve $x^{2}+y^{2}=4$ oriented counter-clockwise.

Surface integral I

1. Given a surface $\sigma=\left\{[x, y, z] \in \mathbb{R}^{3}: z=4-x^{2}-y^{2} \wedge z \geq 0\right\}$
(a) Suggest its parametrization.
(b) Verify that the suggested parametrization is correct.
(c) Compute the length of the normal vector to the parametrization.
2. Parametrize a parallelogram ABCD and verify that the suggested parametrization is correct. $\mathrm{A}=[0 ; 0 ; 0] \quad \mathrm{B}=[0 ; 2 ; 3] \quad \mathrm{C}=[0 ; 5 ; 3] \quad \mathrm{D}=[0 ; 3 ; 0]$
3. For the surface $\sigma=\left\{[x, y, z] \in \mathbb{R}^{3}: 2 x+2 y+z=4 \wedge x, y, z \geq 0\right\}$ compute $\iint_{\sigma} x y \mathrm{~d} p$.
