(Circulation)

0. Given curve is a boundary of domain $\{[x, y] \in \mathbb{R}^2 : y \ge x^2 \land x \ge 0 \land y \le 1\}$ oriented negatively. Compute the circulation of a vector field $\vec{f}(x, y) = (-y/2, x/2)$ over the curve.

Conservative fields, potential

- 1. $\vec{f}(x,y) = (xy, x+y).$
 - (a) Where is \vec{f} conservative?
 - (b) Find its potential $\varphi(x, y)$.
 - (c) Compute the work done (line integral) along line segment between A = [1; 3] and B = [1; 2].

2. $\vec{f}(x,y) = (x^2, y^2)$.

- (a) Where is \vec{f} conservative?
- (b) Find its potential $\varphi(x, y)$.
- (c) Compute the work done (line integral) along line segment between A = [0; 0] and B = [1; 2].

3.
$$\vec{f}(x,y) = -(x-y)^{-2}\vec{i} + (x-y)^{-2}\vec{j}$$
.

- (a) Where is \vec{f} conservative?
- (b) Choose correct potential: (i) $\varphi(x,y) = \frac{1}{y-x} + 2$ (ii) $\varphi(x,y) = \frac{-1}{y-x} + 1$ (iii) $\varphi(x,y) = \frac{1}{x-y} + 1$ (iv) $\varphi(x,y) = \frac{1}{x-y} - \pi$
- (c) Compute the work done (line integral) along a curve $x^2 + y^2/2 = 2$ in a second quadrant, oriented clockwise.
- 4. To the given potential $\varphi(x, y) = x^2 y + c, (c \in \mathbb{R})$
 - (a) determine the constant c if $\varphi = 9$ in $A = [\sqrt{2}; \sqrt{2}]$.
 - (b) find the conservative \vec{f} (corresponding to φ).
 - (c) Compute $\oint_C \vec{f} \cdot \vec{ds}$ where $C: x^2 + y^2 = 4$ oriented counter-clockwise.
- 5. Determine a domain where \vec{f} is conservative and find its potential (if possible).
 - (a) $\vec{f}(x,y) = (x^3y^2 + x, y^2 + yx^4)$
 - (b) $\vec{f}(x,y) = (\ln y \frac{e^y}{x^2}, \frac{e^y}{x} + \frac{x}{y})$
- 6. To the given potential $\varphi(x, y) = xe^{x+y}$
 - (a) find the conservative \vec{f} (corresponding to φ).
 - (b) Compute $\int_C \vec{f} \cdot d\vec{s}$ where $C: x^2 + y^2 = 1$ in a first quadrant, oriented counter-clockwise.