Line integral - circulation

1. $\vec{f}(x, y)=(2 x-y, x)$ and a curve $x^{2}+y^{2}=4$ oriented counter-clockwise.
(a) Compute circulation of \vec{f} over the curve.
(b) Transfer the integral to double integral using the Green's theorem (check the assumptions).
(c) Compare the results.
2. Given curve is a boundary of domain $\left\{[x, y] \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 4 \wedge x \geq 0 \wedge y \geq 0\right\}$ oriented counter-clockwise.
(a) Compute circulation of $\vec{f}(x, y)=\left(-x y, y^{2}+2 y\right)$ over the curve.
(b) Suggest another approach of the computation (just one equality).
3. For a vector function $\vec{f}(x, y)=\left(-\ln \left(x^{2}+y^{2}\right), 1\right)$ compute the circulation over a curve:
(a) $\left\{[x, y] \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ oriented counter-clockwise.
(b) $\left\{[x, y] \in \mathbb{R}^{2}:(x-1)^{2}+y^{2}=1\right\}$ oriented counter-clockwise.
(c) C_{c} is boundary of a square with a center $[3,1]$ and side length $a=2$ oriented positively.
4. Given a curve $C=C_{1} \cup C_{2}$ where C_{1} is a line between points $[1 ; \sqrt{2}]$ and $[1 ;-\sqrt{2}]$ and $C_{2}=\left\{[x, y] \in \mathbb{R}^{2}:(x-1)^{2}+y^{2}=2 \wedge x \leq 1\right\}$ oriented clockwise. Compute

$$
\oint_{C}(x, 1) \cdot \overrightarrow{\mathrm{d} s} .
$$

5. Given curve is a boundary of a triangle $P=[1 ; 1], Q=[2 ; 1], R=[2 ; 3]$ oriented respectively. Compute

$$
\oint_{C}\left(\frac{1}{y},-\frac{1}{x}\right) \cdot \overrightarrow{\mathrm{d} s} .
$$

6. Given curve is a boundary of domain $\left\{[x, y] \in \mathbb{R}^{2}: y \geq x^{2} \wedge x \geq 0 \wedge y \leq 1\right\}$ oriented negatively. Compute the circulation of a vector field $\vec{f}(x, y)=(-y / 2, x / 2)$ over the curve.
