Line integral - circulation

- 1. $\vec{f}(x,y) = (2x y, x)$ and a curve $x^2 + y^2 = 4$ oriented counter-clockwise.
 - (a) Compute circulation of \vec{f} over the curve.
 - (b) Transfer the integral to double integral using the Green's theorem (check the assumptions).
 - (c) Compare the results.
- 2. Given curve is a boundary of domain $\{[x, y] \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land x \ge 0 \land y \ge 0\}$ oriented counter-clockwise.
 - (a) Compute circulation of $\vec{f}(x,y) = (-xy, y^2 + 2y)$ over the curve.
 - (b) Suggest another approach of the computation (just one equality).
- 3. For a vector function $\vec{f}(x,y) = (-\ln(x^2 + y^2), 1)$ compute the circulation over a curve:
 - (a) $\{[x, y] \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ oriented counter-clockwise.
 - (b) $\{[x, y] \in \mathbb{R}^2 : (x 1)^2 + y^2 = 1\}$ oriented counter-clockwise.
 - (c) C_c is boundary of a square with a center [3,1] and side length a = 2 oriented positively.
- 4. Given a curve $C = C_1 \cup C_2$ where C_1 is a line between points $[1; \sqrt{2}]$ and $[1; -\sqrt{2}]$ and $C_2 = \{[x, y] \in \mathbb{R}^2 : (x - 1)^2 + y^2 = 2 \land x \leq 1\}$ oriented clockwise. Compute

$$\oint_C (x,1) \cdot \vec{\mathrm{d}s}$$

5. Given curve is a boundary of a triangle P = [1; 1], Q = [2; 1], R = [2; 3] oriented respectively. Compute

$$\oint_C (\frac{1}{y}, -\frac{1}{x}) \cdot \vec{\mathrm{d}s}$$

6. Given curve is a boundary of domain $\{[x, y] \in \mathbb{R}^2 : y \ge x^2 \land x \ge 0 \land y \le 1\}$ oriented negatively. Compute the circulation of a vector field $\vec{f}(x, y) = (-y/2, x/2)$ over the curve.