

$$
\vec{f}(x, y)=\left(\frac{1}{y}-\frac{1}{x}\right)=(U, V)
$$

C positively oriented (Int C lies on the left)

Green? $D(\vec{f})=\left\{[x, y] \in \mathbb{E}^{2}, x \neq 0 \wedge y \neq 0\right\}$
i) $\left.\frac{\partial U}{\partial x}=0 \quad \frac{\partial U}{\partial y}=-\frac{1}{y^{2}}\right\} \quad$ cont.

$$
\frac{\partial v}{\partial x}=\frac{1}{x^{2}} \quad \frac{\partial v}{\partial y}=0
$$

$$
\operatorname{cont} G=D\left(f^{2}\right)
$$

$$
\uparrow_{x \neq 0}
$$

M/C positively oriented curve; $y \neq 0$ OK $\operatorname{lnt} C G G$

$$
\begin{aligned}
& \oint_{C} \overrightarrow{f \cdot d \vec{s}}=\iint_{C}\left(\frac{\partial V}{\partial x}-\frac{\partial U}{\partial y}\right) d x d y=\iint_{\ln t}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right) d x d y=I \\
& \text { line } r \quad y=k x+q \\
& \begin{array}{l}
P_{\in q}=1 k+q \lll q=-1 \\
p: 3=2+q
\end{array} \\
& \text { (} R=\frac{3=2 k+q}{-2=-l} \Rightarrow R=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { EDo } \because\left\{\begin{array}{l}
1 \leq x \leq 2 \\
1 \leq y \leq 2 x-1
\end{array}\right] \quad \int y^{-1} d y=-y^{-1} \\
& I=\int_{1}^{2}\left(\int_{1}^{2 x-1}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right) d y\right) d x=\int_{1}^{2}\left[\frac{1}{x^{2}} \cdot-\frac{1}{y}\right]_{1}^{2 x-1} d x= \\
& =\int_{1}^{2}\left(\frac{1}{x^{2}}(2 x-1)-\frac{1}{x^{2}}-\frac{1}{2 x-1}+1\right) d x=
\end{aligned}
$$

(5)

$$
\begin{aligned}
& =\int_{1}^{2}\left(\frac{2}{x}-\frac{2}{x^{2}}-\frac{1}{2 x-1}+1\right) d x= \\
& =\left[2 \ln |x|+\frac{2}{x}-\frac{1}{2} \ln |2 x-1|+x\right]_{1}^{2}= \\
& =2 \ln 2+1-\frac{1}{2} \ln 3+2-(0+2+1)= \\
& =\ln \left(\frac{4}{\sqrt{3}}\right)=\ln \left(\frac{4 \sqrt{3}}{3}\right)
\end{aligned}
$$

6.) $\oint\left(-\frac{f}{2} ; \frac{x}{2}\right) \cdot d s=x$

Green? $\quad U=-\frac{y}{2} \quad V=\frac{x}{2}$
i) $\frac{\partial U}{\partial x}=0 \quad \frac{\partial U}{\partial y}=-\frac{1}{2} \quad \frac{\partial V}{\partial x}=\frac{1}{2} \quad \frac{\partial V}{\partial y}=0$
ii) C^{*} positively oriented curve; $\operatorname{lnt} C^{*} \subset G$

\int cont.

$$
i m \mathbb{E}_{2}=G
$$ $(-D(\vec{f}))$

$$
\begin{aligned}
* & \text { Green }-\iint_{\ln t}\left(\frac{\partial V}{\partial x}-\frac{\partial U}{\partial y}\right) d x d y=-\iint_{\ln t}\left(\frac{1}{2}+\frac{1}{2}\right) d x d y=\left.\right|_{0 \leq x \leq 1} \\
& =-\int_{0}^{1}\left(\int_{0}^{1} 1 x^{2} d y\right) d x=-\int_{0}^{1}[y]_{x^{2}}^{1} d x= \\
& =-\int_{0}^{1}\left(1-x^{2}\right) d x=\left[\frac{x^{3}}{3}-x\right]_{0}^{1}=\frac{1}{3}-1=-\frac{2}{3}
\end{aligned}
$$

