Line integral II

1. A curve is given as a segment of a function $y=x^{2}$ from $A=[0 ; 0]$ to $B=[2 ; 4]$.
(a) Suggest its parametrization (and determine bounds for the parameter).
(b) Compute line integral of a scalar function $f(x, y)=x+4 x y$.
(c) Compute line integral of a vector function $\vec{f}(x, y)=(x ; x y)$.
2. A curve is given as a segment of a function $x=2 y^{2}$ from $A=[8 ; 2]$ to $B=[2 ; 1]$.
(a) Suggest its parametrization (and determine bounds for the parameter).
(b) Compute line integral of a vector function $\vec{f}(x, y)=(\sqrt{x}+y ; x+\sqrt{y})$.
3. For a curve $C=\left\{[x, y] \in \mathbb{R}^{2}: y=e^{x} \wedge|x| \leq 1\right\}$ oriented with the starting point $[1 ; e]$ compute integral:

$$
\int_{C} x^{3} \mathrm{~d} x+\frac{1}{y} \ln y \mathrm{~d} y
$$

4. For a curve $C=\left\{[x, y] \in \mathbb{R}^{2}: x^{2}+y^{2}=a^{2} \wedge y \geq 0\right\}$ oriented clockwise $\left(a \in \mathbb{R}^{+}\right)$compute:

$$
\int_{C} \frac{1}{\sqrt{x^{2}+y^{2}}}(y ;-x) \cdot \overrightarrow{\mathrm{d} s}
$$

5. For the line segment between points $A=[7 ;-2 ; 0]$ a $B=[3 ; 0 ; 1]$ compute integral:

$$
\int_{C}\left(z^{2} \vec{i}+z \vec{j}-y \vec{k}\right) \cdot \overrightarrow{\mathrm{d} s}
$$

6. Compute line integral of a vector function $\vec{f}(x, y, z)=\left(-y z ; z \sqrt{9-y^{2}} ; x y\right)$ along one-quarter of a thread of a circular helix with radius $3\left(z=\frac{3 t}{2 \pi}\right)$. The helix starts in the lowest point $z=0$.
7. Given force $\vec{f}(x, y, z)=\frac{K}{\sqrt{\left(x^{2}+y^{2}+z^{2}\right)^{3}}}(x ; y ; z)$ where $K>0$ is a real constant.

Compute a work done by the force when it moves a mass point along a strait line $A B$ where $A=[2 ; 0 ; 0]$ and $B=[2 ; 1 ; 5]$.

