Line integral

1. Find a parametrization of a line segment $A B$ where $A=[1 ; 2 ; 4]$ and $B=[3 ;-1 ; 7]$. Verify that your parametrization is correct by using the theorem from the lecture.
2. Given a curve C_{1} as a segment of the function $y=1 / x$ for $1 \leq x \leq 2$.
(a) Suggest its parametrization.
(b) Verify that the suggested parametrization is correct.
(c) Compute the length of the tangent vector to the parametrization.
3. Given a curve C_{2} as a segment of the function $y=\sqrt{x}$ for $0 \leq x \leq 4$.
(a) Suggest its parametrization (and verify it is the correct one).
(b) Compute the length of the tangent vector to the parametrization.
4. Consider a parametrization $P(t)=\left(t^{2} ; t^{3}\right) ; t \in\langle 0 ; 1\rangle$.
(a) Write the parametric equations of the curve and verify that $P(t)$ is correctly def.
(b) Suggest another (correct) parametrization of the same curve.
(c) Compute the length of the curve.
5. For $f(x, y)=2 x^{6} y$ and curve from example number 2. compute:

$$
\int_{C_{1}} f \mathrm{~d} s=?
$$

6. Compute the mass of the curve $\left\{[x, y] \in \mathbb{R}^{2}: x^{2}+y^{2}=9 \wedge x \geq 0 \wedge y \geq 0\right\}$ when the linear density is $\rho(x, y)=x$.
7. Compute the mass of the curve $\left\{[x, y, z] \in \mathbb{R}^{3}: x^{2} / 9+y^{2} / 25=1 \cap 4 x-3 z=0\right\}$ when the linear density is $\rho(x, y, z)=z^{2}$.
