1.) $\underbrace{\iiint_{M} y \cos (x+z) d x d y d z}_{=I}$
sketch:
cut
$\eta=0$

$\partial M: \quad y=\sqrt{x} \quad y=0$

$I=\int_{0}\left(\int_{0}\left(\int_{0} y \cos (x+z) d z\right) d y\right) d x=$
$\left.\begin{aligned} & 000 \\ & f \quad t=x+z \quad{ }^{0} \frac{\pi}{2}-x \rightarrow \frac{\pi}{2} \\ & d t=0+d z \quad 0 \rightarrow x\end{aligned} \right\rvert\,=\int_{0}^{\pi / 2}\left(\int_{0}^{\sqrt{x}}\left(\int_{x}^{\pi / 2} y \cos t d t\right) d y\right) d x=$
$=\int_{0}^{\pi / 2}\left(\int_{0}^{\sqrt{x}}[y \sin t]_{x}^{\pi / 2} d y\right) d x=\int_{0}^{\pi / 2} \int_{0}^{\sqrt{x}} y(1-\sin x) d y d x=$
$=\int_{0}^{\pi / 2}\left[\frac{\eta^{2}}{2}(1-\sin x) \int_{0}^{\sqrt{x}} d x=\frac{1}{2} \int_{0}^{\pi / 2} x(1-\sin x) d x=\right.$ (M1)

$$
=\frac{1}{2}\left(\frac{\pi^{2}}{8}-1\right)=\frac{\pi^{2}-8}{16}
$$


$2 \iiint \int_{M}(x+y+z) d x d y d z$
$\partial M:$

$$
\begin{array}{ll}
x=1 \\
y=x & y=0 \\
z=0 & z=\sqrt{2}
\end{array}
$$

I
prop $A_{0} z=0$ (*)
inequalities:

$$
\begin{array}{ll}
0 \leq z \leq \sqrt{2} & \text { or } \\
0 \leq y \leq x & 0 \leq z \leq \sqrt{2} \\
0 \leq x \leq 1 & 0 \leq x \leq 1
\end{array}
$$




$$
\begin{aligned}
I & =\int_{0}^{\sqrt{2} 1} \int_{0} \int_{0}^{x}(x+y+z) d y d x d z= \\
& \left.\left.=\int_{0}^{\sqrt{2}} \int_{0}^{1}\left[x y+\frac{y^{2}}{2}+z y\right]_{0}^{x} d x d z=\right]_{y}^{\sqrt{2}}\right]_{x} \\
& =\int_{0}^{\sqrt{2}} \int_{0}^{1}\left(\frac{3 x^{2}}{2}+z x\right) d x d z=\int_{0}^{\sqrt{2}}\left[\frac{x^{3}}{2}+z \frac{x^{2}}{2}\right]_{0}^{1} d z=
\end{aligned}
$$

note: $\iint d x d z$

$$
=\int_{0}^{\sqrt{2}}\left(\frac{1}{2}+\frac{z}{2}\right) d z=\frac{1}{2}\left[z+\frac{z^{2}}{2}\right]_{0}^{\sqrt{2}}=\frac{1}{2}\left(\sqrt{2}+\frac{2}{2}\right)=\frac{1+\sqrt{2}}{2}
$$

2. Way:

$$
\begin{aligned}
\text { Way } & =\int_{0}^{1} \int_{0}^{x} \int_{0}^{\sqrt{2}}(x+y+z) d z d y d x=\int_{0}^{1} \int_{0}^{x}\left[x z+y z+\frac{z^{2}}{2}\right]_{0}^{\sqrt{2}} d y d x= \\
& =\int_{0}^{1} \int_{0}^{x}(x \sqrt{2}+y \sqrt{2}+1) d y d x=\int_{0}^{1}\left[x j \sqrt{2}+\eta_{2}^{2} \sqrt{2}+y\right]_{0}^{x} d x= \\
= & \int_{0}^{1}\left(x^{2} \sqrt{2}+\frac{x^{2}}{2} \sqrt{2}+x\right) d x=\int_{0}^{1}\left(\frac{3 x^{2} \sqrt{2}}{2}+x\right) d x=-\frac{1+\sqrt{2}}{2}=
\end{aligned}
$$

$3)$

$$
\begin{aligned}
& \int(x, y, z)=x^{2}+y^{2} \\
& m_{x y}=\iiint_{M} z S(x, y, z) d x d y d z= \\
& =\int_{0}^{3}\left(\int_{0}^{3}\left(\int_{0}^{x y} z\left(x^{2}+y^{2}\right) d z\right) d y\right) d x= \\
& =\iint_{M_{x y}}\left[\frac{z^{2}}{2}\right]_{0}^{x y}\left(x^{2}+y^{2}\right) d y d x=\iint_{M_{x y}} \frac{x^{2} y^{2}}{2}\left(x^{2}+y^{2}\right) d y d x= \\
& =\frac{1}{2} \int_{0}^{3}\left[x^{4} \frac{y^{3}}{3}+x^{2} \frac{7^{5}}{5}\right]_{0}^{3} d x=\frac{1}{2} \int_{0}^{3}\left(9 x^{4}+\frac{3^{5}}{5} x^{2}\right) d x= \\
& =\frac{1}{2}\left[3^{2} \frac{x^{5}}{5}+\frac{3^{5}}{5} \frac{x^{3}}{3}\right]_{0}^{3}=\frac{1}{2}\left(\frac{3^{7}}{5}+\frac{3^{7}}{5}\right)=\frac{3^{7}}{5} \\
& {\left[\operatorname{Sig}_{\mathrm{y}} \cdot m\right]}
\end{aligned}
$$

$$
\begin{align*}
& 4 \\
& \text { 4.) } \partial M: z=\sqrt{3 x^{2}+3 y^{2}}=\left.\sqrt{3} \sqrt{x^{2}+y^{2}}\right|^{2} \\
& z^{2}=3 x^{2}+3 y^{2} \\
& 3 x^{2}+3 y^{2}-z^{2}=0 \text { conce sivifaie } \\
& x^{2}+y^{2}=r^{2} \\
& 3 r^{2}-z^{2}=0 \\
& \sqrt{3} r=|z| \\
& \sqrt{3 x^{2}+3 y^{2}} \leq z \leq 3 \\
& \cap_{z}=\iiint_{M}\left(x^{2}+y^{2}\right) \int(x, y, z) d x d y d z= \\
& =\iint_{M_{x y}}\left(\int_{\sqrt{3 x^{2}+3 y^{2}}}^{3}\left(x^{2}+y^{2}\right) \rho^{y} d z\right) d x d y=\iint_{M_{x y}}\left(x^{2}+y^{2}\right) \rho[z]_{\sqrt{3 x^{2}+3 y^{2}}}^{3} d x d y= \\
& \left.=\iiint_{M_{x y}}\left(x^{2}+y^{2}\right)\left(3-\sqrt{3} \sqrt{x^{2}+y^{2}}\right) d x d y=\begin{array}{ll}
=x \cos \varphi & \left|\begin{array}{l}
\text { subst. to polar coords. } \\
y=r \sin \varphi
\end{array}\right| 0 \leq \sqrt{3} \\
j=r
\end{array} \right\rvert\,= \\
& =\int_{0}^{\sqrt{3}} \int_{0}^{2 \pi}\left(\int_{0}^{2} r^{2}(3-\sqrt{3} r) r d \varphi\right) d r=\int_{0}^{\sqrt{3}} \int_{0}[\varphi]_{0}^{2 \pi}\left(3 r^{3}-\sqrt{3} r^{4}\right) d r= \\
& =2 \pi \rho\left[\frac{3 r^{4}}{4}-\frac{\sqrt{3} r^{5}}{5}\right]_{0}^{\sqrt{3}}=2 \pi \rho\left(\frac{3^{3}}{4}-\frac{3^{3}}{5}\right)= \\
& =2 \pi g 3^{3}\left(\frac{1}{4}-\frac{1}{5}\right)=\frac{27 \pi \rho}{10} \tag{2}
\end{align*}
$$

5. 

$$
\begin{aligned}
& 0 \leq z \leq 4-\sqrt{x^{2}+y^{2}} \\
& f(x, y, z)=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

$$
\partial M: z=4-\sqrt{x^{2}+y^{2}}
$$

$$
\begin{aligned}
& (z-4)^{2}=x^{2}+y^{2} \\
& x^{2}+y^{2}-(z-4)^{2}=0
\end{aligned}
$$

$\rightarrow$ cylindrie corel

$$
\begin{aligned}
& x=r \cos \varphi \\
& y=r \sin \varphi \\
& z=W \\
& y=r
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq r \leq 4 \\
& 0 \leq \varphi \leq 2 \pi \\
& 0 \leq w \leq 4
\end{aligned}
$$

$$
0 \leq w \leq 4-r
$$




$$
\begin{aligned}
& \iiint_{M} \sqrt{x^{2}+j^{2}} d x d y d z=\int_{0}^{4}\left(\int_{0}^{2 \pi}\left(\int_{0}^{4-r} r r d w\right) d \varphi\right) d r= \\
& \left.=\iint_{0}^{2 \pi} r^{2}[w]_{0}^{4-r} d \varphi\right) d r=\int_{0}^{4}[\varphi]_{0}^{2 \pi}\left(4 r^{2}-r^{3}\right) d r= \\
& =2 \pi\left[\frac{4 r^{3}}{3}-\frac{r^{4}}{4}\right]_{0}^{4}=2 \pi\left(\frac{2^{8}}{3}-\frac{2^{8}}{4}\right)=\frac{2^{7} \pi}{3}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \operatorname{mas}=\iiint_{M} \sqrt{x^{2}+y^{2}} d x d y d z \\
& \operatorname{Mas}=\iiint_{M} \int_{M}(x, \eta, z) d x d y d z
\end{aligned}
$$

$$
S(x, y, t)=\sqrt{x^{2}+y^{2}} \geq 0
$$

$6 \quad 0 \leq z \leq 1$

$$
0 \leq y \leq x
$$

dM $\frac{x^{2}}{3}+y^{2}=1 \quad \rightarrow$ elliptic oflinder

gen glindire wool $M_{x_{j}}$

$$
\begin{aligned}
& x=r \sqrt{3} \cos \varphi \\
& y=r \sin \varphi \\
& z=w \\
& J=r \sqrt{3} \quad *
\end{aligned}
$$

boundaries

$$
\left(\begin{array}{ll}
x=-\frac{\text { note }}{\cos \varphi} & a=\sqrt{3} \\
y=r b \sin \varphi & b=1
\end{array}\right)
$$

$$
\begin{aligned}
& 0 \leq W \leq 1 \\
& 0 \leq r \leq 1 \\
& 0 \leq \varphi \leq 4
\end{aligned}
$$

for point $P:$

$$
\begin{aligned}
& x=y \quad \Lambda \frac{x^{2}}{3}+y^{2}=1 \\
& \frac{x^{2}}{3}+x^{2}=1 \\
& x^{2}=\frac{3}{4} \Rightarrow x= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
x=R \sqrt{3} \cos \varphi \Rightarrow R^{1} \sqrt{3} \cos \varphi_{\text {max }}=\frac{\sqrt{3}}{2}
$$

$$
\cos \varphi_{\text {max }}=\frac{1}{2}
$$

$$
\varphi_{\text {max }}=\frac{\pi}{3}
$$

$(6 a)$

$$
\iiint_{M} 1 d x d y d z=\int_{0}^{1}\left(\int_{0}^{\pi / 3}\left(\int_{0}^{1} 1 \cdot r \sqrt{3} d r\right) d \varphi\right) d w=
$$

b) $=\int_{0}^{1} \int_{0}^{\pi / 3}\left[\frac{w^{2}}{2} \sqrt{3}\right]_{0}^{1} d \varphi d w=\frac{\sqrt{3}}{2}[\varphi]_{0}^{\pi}[w]_{0}^{1}=$

$$
=\frac{\pi \sqrt{3}}{6}
$$

C)

$$
\begin{aligned}
& V=\iiint_{M} 1 d x d y d z \quad(\text { Volume }) \\
& m=\iiint_{M} \int_{M}(x, y, z) d x d y d s \quad(x, y, z)=1
\end{aligned}
$$

note

$$
\begin{array}{rl}
* & \mathcal{*}=\left|\begin{array}{llll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial w}
\end{array}\right|=\left|\begin{array}{ccc}
\sqrt{3} \cos \varphi & -r \sqrt{3} \sin \varphi & 0 \\
\sin \varphi & r \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right|= \\
& =r \sqrt{3} \cos ^{2} \varphi+r \sqrt{3} \sin ^{2} \varphi<\sqrt{3}
\end{array}
$$

71

$$
\begin{aligned}
& C_{z}=\frac{m_{x y}}{m} \quad \rho\left(x_{1, y, z)}=S=\right.\text { const } \\
& m_{x_{j}}=\iiint_{M} z S d x d y d z=\int_{0}^{h 2 \pi h-r} \int_{0} \int_{0} w \int r d w d \varphi d r
\end{aligned}
$$

$m=\iiint_{M} \rho d x d y d z=\int_{0}^{h} \int_{0}^{2 \pi} \int_{0}^{h-r} \rho r d x d \varphi d r$
$x=r \cos \varphi$
$0 \leq r \leq h$
$y=r \sin \varphi$
$0 \leq \varphi \leq 2 \pi$

$$
z=w \quad j=r \quad 0 \leq w \leq h-r
$$

$$
\begin{aligned}
& m_{x y}=\int_{0} \int_{0}^{h} \int_{0}^{2 \pi}\left[\frac{w^{2}}{2}\right]_{0}^{h-r} r d \varphi d r=f \int_{0}^{h}[\varphi]_{0}^{2 \pi}\left(h^{2}-2 h r+r^{2}\right) r d r= \\
& =\pi \int_{0}^{n}\left(h^{2} r-2 h r^{2}+r^{3}\right) d r=\pi S\left[h^{2} \frac{r^{2}}{2}-2 h^{3} \frac{r^{4}}{4}\right]_{0}^{h}= \\
& =\pi S\left(\frac{h^{4}}{2}-\frac{2 h^{4}}{3}+\frac{h^{4}}{4}\right)=\pi S h^{4} \frac{6-8+3}{12}=\frac{\pi S h^{4}}{12} \\
& m=\iint_{0}^{h} \int_{0}^{2 \pi}[w]_{0}^{h} r d \varphi d r=\int_{0}^{h}[\varphi]_{0}^{2 \pi}(h-r) r d r= \\
& =2 \pi \int_{0}^{h}\left(h r-r^{2}\right) d r=2 \pi S\left[h \frac{r^{2}}{2}-\frac{r^{3}}{3}\right]_{0}^{h}= \\
& =2 \pi S\left(\frac{h^{3}}{2}-\frac{h^{3}}{3}\right)=2 \pi S h^{3} \frac{3-2}{6}=\frac{\pi \rho h^{3}}{3} \\
& C_{z}=\frac{m_{x y}}{m}=\frac{\frac{\pi / h^{4}}{\pi_{2}}}{\frac{\pi h^{3}}{3}}=\frac{h}{4}
\end{aligned}
$$

