## (Double integral)

0 . Given $D=\left\{[x, y] \in \mathbb{R}^{2}: 1 \leq y \leq x^{2} \wedge(0) \leq x \leq 2\right\}$,
compute volume of a body form above domain $D$ under the graph of function $f(x, y)=3+\frac{x}{y^{2}}$.

## Triple integrals

1. Given a body: $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq x \wedge 0 \leq y \leq x \wedge 0 \leq z \leq 3-x-y\right\}$. Its density $\rho(x, y, z)=3$.
(a) Determine the upper $x$-boundary and sketch the projection to $x y$ plane.
(b) Compute its mass.
2. Given a body bounded by: planes $y=2 x ; x=0 ; y=2$ and inequality $2-y \leq z \leq 3$.
Sketch the projection to $x y$ plane and compute its volume.
3. Given a body in the first octant, bounded by: $x+y=1 ; z=x y$.

Sketch the projection to $x y$ plane and compute its volume.
4. Sketch (in cuts) a cylindrical reservoire with radius $R=2$, symmetrical about $z$-axes which is bounded by planes $z=0$ and $z=-3-x$. Compute its volume.
5. Sketch (in cuts) a body $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq z \leq 4-x^{2}-y^{2} \wedge y \geq 0\right\}$. Compute its volume.

