(Double integral)

0. Given $D = \{[x,y] \in \mathbb{R}^2 : 1 \le y \le x^2 \land (0) \le x \le 2\}$, compute volume of a body form above domain D under the graph of function $f(x,y) = 3 + \frac{x}{y^2}$.

Triple integrals

- 1. Given a body: $M = \{[x, y, z] \in \mathbb{R}^3 : 0 \le x \land 0 \le y \le x \land 0 \le z \le 3 x y\}$. Its density $\rho(x, y, z) = 3$.
 - (a) Determine the upper x-boundary and sketch the projection to xy plane.
 - (b) Compute its mass.
- 2. Given a body bounded by: planes $y=2x; \ x=0; \ y=2$ and inequality $2-y \le z \le 3$. Sketch the projection to xy plane and compute its volume.
- 3. Given a body in the first octant, bounded by: x + y = 1; z = xy. Sketch the projection to xy plane and compute its volume.
- 4. Sketch (in cuts) a cylindrical reservoire with radius R=2, symmetrical about z-axes which is bounded by planes z=0 and z=-3-x. Compute its volume.
- 5. Sketch (in cuts) a body $M=\{[x,y,z]\in\mathbb{R}^3:\ 0\leq z\leq 4-x^2-y^2\ \land\ y\geq 0\}.$ Compute its volume.