Double integrals: applications, polar coordinates

- 1. Given 2D body: $D = \{[x, y] \in \mathbb{R}^2 : 0 \le x \le 1 \land 0 \le y \le 2x + 1\}$. Its (2D) density $\rho(x, y) = x$.
 - (a) Compute its mass.
 - (b) Compute the static moment according to y-axis $(m_y = ?)$.
 - (c) Determine the x-coordinate of center of mass $(x_C = ?)$.

(HW:) Determine the y-coordinate of center of mass $(y_C = ?)$. $[y_C = 17/14]$

- 2. Given 2D body bounded by curves: $y = \frac{1}{x} 1$; y = x; y = 0. $\rho(x, y) = (y + 1)^2$. $J_y = ?$
- 3. Given $D = \{ [x, y] \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land y \ge 0 \}.$
 - (a) Transfer the following integral to polar coordinates:

$$\iint_D xy \, \mathrm{d}x \mathrm{d}y$$

- (b) Compute the integral.
- (c) Write one possible physical meaning of the integral, $\rho(x, y) = ?$.

(HW:) Determine the center of mass (C = ?) when $\rho(x, y) = y$. $[y_C = 3\pi/8]$.

4. Given $f(x, y) = \frac{1}{\sqrt{9 - x^2 - y^2}}$ and $D = \{ [x, y] \in \mathbb{R}^2; x \ge 0 \land x^2 + y^2 \le 8 \}.$

$$\iint_D f(x,y) \, \mathrm{d}x \mathrm{d}y = ?$$

- 5. Given $D = \{ [x, y] \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \le 1 \land x \ge 0 \land y \ge 0 \}.$
 - (a) Transfer the following integral to generalized polar coordinates:

$$\iint_D xy^2 \, \mathrm{d}x \mathrm{d}y$$

- (b) Compute the integral.
- (c) Write all possible physical meanings of the integral, $\rho(x, y) =$?