Double integrals II

1. Given domain in \mathbb{R}^{2} is bounded by curves: $y=x^{3} ; \quad y=\sqrt{x}$.
(a) Sketch the domain and express it as EDI relative to y-axis.
(b) Express the domain as EDI relative to x-axis.
(c) Compute area of the domain.
(d) Compute $\iint_{D}\left(4 x y-y^{3}\right) \mathrm{d} x \mathrm{~d} y$.
2. Reverse the order of integration (a): $\int_{0}^{\pi}\left(\int_{0}^{y} x \sin y \mathrm{~d} x\right) \mathrm{d} y$ and compute the double integral (b).
3. Compute the double integral $\int_{0}^{2}\left(\int_{y / 2}^{1} e^{x^{2}} \mathrm{~d} x\right) \mathrm{d} y$.
hint: Reversing the order of the integration could help you.
4. Given domain in \mathbb{R}^{2} is bounded by curves: $y=8-x^{2} ; \quad y=x^{2}$.
(a) Sketch the domain and express it as EDI of your choice.
(b) Compute area of the domain.
(c) Compute $\iint_{D} x y \mathrm{~d} x \mathrm{~d} y$.
5. Given $D=\left\{[x, y] \in \mathbb{R}^{2}: 0 \leq x \leq \sqrt{4-y^{2}}\right\}$.
(a) Sketch the domain and express it as EDI relative to y-axis.
(b) Transfer the following integral to polar coordinates $\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y$.
6. Transfer the following integral to polar coordinates $\int_{-3}^{0}\left(\int_{0}^{\sqrt{9-x^{2}}} \sin \left(x^{2}+y^{2}\right) \mathrm{d} y\right) \mathrm{d} x$ and compute it.
