Double integrals, Elementary Domain of Integration (EDI)

1. Given $f(x, y)=\frac{1}{\sqrt{9-x^{2}-y^{2}}}$.
$\exists ? \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y$
(a) $D=\left\{x, y \in \mathbb{R}^{2} ; x \geq 0 \wedge x^{2}+y^{2}<9\right\}$
(b) $D=\left\{x, y \in \mathbb{R}^{2} ; x \geq 0 \wedge x^{2}+y^{2} \leq 8\right\}$
2. Given domain in \mathbb{R}^{2}, bounded by curves: $y=x-1 ; \quad y=-1 ; \quad y=\ln (x)$.
(a) Sketch the domain and express it as EDI relative to y-axis.
(b) Express the domain as EDI relative to x-axis.
(c) Compute area of the domain.
3. Given curves: $y^{2}=x+2 ; \quad y=x$.
(a) Sketch a domain bounded between them and determine intersection points.
(b) Express the domain as EDI relative to y-axis.
(c) Compute area of the domain.
4. Given domain $D=\left\{x, y \in \mathbb{R}^{2} ; x \geq 0 \wedge x+y \leq 2 \wedge y \geq \sqrt{x}\right\}$.

To the given function $f(x, y)=x y$ compute $\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y$.
5. Change the order of integration:

$$
\int_{1}^{e}\left(\int_{0}^{\ln (x)} f(x, y) \mathrm{d} y\right) \mathrm{d} x
$$

6. Reverse the order of integration (a):

$$
\int_{0}^{1}\left(\int_{1}^{x+1} e^{x} \mathrm{~d} y\right) \mathrm{d} x
$$

and compute the double integral (b).

