(constrained extremes)

1. Given $f(x, y)=2 x^{2}+y^{2}-x y+3 x+y+1$,
a) Find local extremes of the function f, i.e. find their position, type and value.
b) Find (glob.) extremes of the function f constrained on the line $x=2-y$.
2. Find global extremes of $f(x, y)=x^{2}-2 x+y^{2}$ on a set $\mathcal{H}=\left\{[x, y] \in \mathbb{R}^{2} ; x^{2}+y^{2}=9\right\}$.

Global (absolute) extremes

3. Find global extremes of $f(x, y)=x^{2}+x y-3 x-y$
on a set $\mathcal{M}=\left\{[x, y] \in \mathbb{R}^{2} ; x+y \leq 3 \wedge x \geq 0 \wedge y \geq 0\right\}$.
4. Find global extremes of $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+2$ on a set $\mathcal{M}=\left\{[x, y] \in \mathbb{R}^{2} ; x \geq 0 \wedge 2 \geq y \geq 2 x\right\}$.
5. Find global extremes of $f(x, y)=x^{2}-y^{2}$
on a set $\mathcal{M}=\left\{[x, y] \in \mathbb{R}^{2} ; x \geq-1 \wedge y \geq-1 \wedge x+2 y \leq 2\right\}$.
[glob. min. in $P_{4}=[-2 / 3 ; 4 / 3], f\left(P_{4}\right)=-4 / 3$, glob. max. in $\left.P_{5}=[-1 ;-1], f\left(P_{5}\right)=15\right]$

possible repetition of implicitly defined function

1. $F(x, y)=x^{2}+\frac{1}{2} y^{2}+x y-9 \ln (x)$
(a) Find iso-curve $\iota: \quad F(x, y)=1$.
(b) Write an equation of a line tangent to the iso-curve ι in a tangent point $A=[1 ; 0]$. hint: Use implicitly defined function $(F(x, y)=1)$ and compute its derivative.
(c) Approximate the iso-curve ι in a point A with the $2^{\text {nd }}$ order Taylor polynomial.
[b) $y=7(x-1)$ c) $\left.y(x) \approx 7(x-1)-37(x-1)^{2}\right]$
2. $F(x, y, z)=z^{3}+3 x^{2} z-2 x y=0$
(a) \exists ? $z=f(x, y)$ near the point $A=[-1 ;-2 ; 1]$ defined implicitly?
(b) $\nabla f=$? at point $A_{0}=[-1 ;-2]$.
(c) Compute a tangent plane (τ) to $z=f(x, y)$ at point A.
[b) $\nabla f\left(A_{0}\right)=(1 / 3 ;-1 / 3)$ c) $\left.z-1=1 / 3(x+1)-1 / 3(y+2)\right]$
