(local extremes)

- 1. Find the local extrema of the function $f(x,y) = x^3 + y^3 + 3x^2 3y^2 8$, i.e. find their position, type and value.
- 2. Determine if the function $f(x,y) = 4xy x^4 y^4 11$ has local extremes at points $A_0 = [0;0]$ or $A_1 = [1;1]$. If the answer is YES, find its type and value.
- 3. Has the function $f(x,y) = e^x \cos y$ local extrema?
- 4. Find all critical points of the function $f(x,y) = y \cos x$.

Constrained extremes

- 5. Given $f(x,y) = 2xy x^2 3y^2 + 4y$, identify the global extremes of f constrained on a line segment y = 1 x for $-1 \le x \le 1$.
- 6. Find global (constrained) extremes of function $f(x,y) = x^2 + y x\sqrt{y} 6x + 12$ on a line segment AB where A = [0, 0] and B = [9, 9].
- 7. Given $f(x,y) = 2x^2 + y^2 xy + 3x + y + 1$,
 - a) Find local extremes of the function f, i.e. find their position, type and value.
 - b) Find (glob.) extremes of the function f constrained on the line x = 2 y.
- 8. Find global extremes of $f(x,y) = x^2 2x + y^2$ on a set $\mathcal{H} = \{[x,y] \in \mathbb{R}^2; \ x^2 + y^2 = 9\}.$

Global (absolute) extremes

- 9. Find global extremes of $f(x,y) = x^2 + xy 3x y$ on a set $\mathcal{M} = \{[x,y] \in \mathbb{R}^2; \ x+y \le 3 \ \land \ x \ge 0 \ \land \ y \ge 0\}.$
- 10. Find global extremes of $f(x,y) = 2x^2 4x + y^2 4y + 2$ on a set $\mathcal{M} = \{[x,y] \in \mathbb{R}^2; \ x \ge 0 \ \land \ 2 \ge y \ge 2x\}.$
- 11. Find global extremes of $f(x,y) = x^2 y^2$ on a set $\mathcal{M} = \{[x,y] \in \mathbb{R}^2; \ x \ge -1 \ \land \ y \ge -1 \ \land \ x + 2y \le 2\}.$