Higher derivatives

Compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ of following functions:

1.
$$y(x) = e^{-x^2}$$

3. $y(x) = \frac{1+x}{1-x}$
2. $y(x) = x^2 \ln x$

Tangent to the function

- 4. To the given function f(x) = 4x-x², find the slope of a tangent to the graph in points (a) x₀ = 0, (b) x₀ = 4. Determine if the function is increasing or decreasing near these points and how fast it is (inclination of the tangent).
- 5. Write the equation of the tangent line to the graph of $f(x) = \frac{1}{3}x^3$ in a point $x_0 = -1$. Use this result to calculate an approximate value of $f(-\frac{2}{3})$.
- 6. Write the equation of the tangent line to the graph of $f(x) = \sqrt{2x+3} x$ in a tangent point T = [3; ?]. Use this result to calculate an approximate value of f(3.2).
- 7. Write the equations of the tangent and normal lines to the graph of $f(x) = e^{-x} \cos 2x$ in point $x_0 = 0$.
- 8. Find a tangent point, such that the tangent line of a function $f(x) = x^2 + 4x$ (in the point) is parallel to the x-axes.
- HW Approximate the value of $\sqrt{101}$ with 2 decimal places precision. hint: use tangent line to $f(x) = \sqrt{x}$

Intervals of monotonicity and local extrema

Determine the intervals of monotonicity, find local extrema (and determine their types) of following functions:

9.
$$f(x) = 3x - x^3$$

10.
$$f(x) = x^2 - \ln(x^2)$$

11. $f(x) = x^2 e^x$

12. $f(x) = x^2 \ln x$