More complicated limits

- 1. $\lim_{n \to \infty} \frac{n + \cos(n!)}{2n + 1}$
- 2. $\lim_{n \to \infty} \frac{\arctan(n^2)}{n+1}$

Functions

- 1. Are the following functions odd or even?
 - (a) $f(x) = \sin(x^2) + |x|$
 - (b) $f(x) = \tan(4x)$
 - (c) $f(x) = x + x^2$
- 2. Are the following functions periodic?

(a)
$$f(x) = \cos^2(\frac{x}{2})$$

(b) $f(x) = \arctan(\tan(x))$

- (c) $f(x) = \tan(\arctan(x))$
- 3. Sketch a graph of a given function, find its Domain of definition and Range:

(a)
$$f(x) = (x-3)^2$$

(b) $f(x) = e^{-x/2}$
(c) $f(x) = |x| + 5$
(d) $f(x) = \ln(x+1) + 2$
(e) $f(x) = \arctan(x)$
(f) $f(x) = 2\arctan(x) + \pi$
(g) $f(x) = \arccos(\frac{x}{2}) - \frac{\pi}{2}$

(h) $f(x) = \arcsin(x-5)$

Find (a) Domain of definition $(\mathcal{D}(f))$ and Range of the given function, (b) compute limits in boundary points of $\mathcal{D}(f)$.

4.
$$f(x) = \ln(x - \sqrt{x+1})$$

5. $f(x) = \arccos \frac{1-2x}{4}$
6. $f(x) = \ln(x+3) + \sqrt{5-2x}$