More complicated limits

1. $\lim _{n \rightarrow \infty} \frac{n+\cos (n!)}{2 n+1}$
2. $\lim _{n \rightarrow \infty} \frac{\arctan \left(n^{2}\right)}{n+1}$

Functions

1. Are the following functions odd or even?
(a) $f(x)=\sin \left(x^{2}\right)+|x|$
(b) $f(x)=\tan (4 x)$
(c) $f(x)=x+x^{2}$
2. Are the following functions periodic?
(a) $f(x)=\cos ^{2}\left(\frac{x}{2}\right)$
(b) $f(x)=\arctan (\tan (x))$
(c) $f(x)=\tan (\arctan (x))$
3. Sketch a graph of a given function, find its Domain of definition and Range:
(a) $f(x)=(x-3)^{2}$
(b) $f(x)=e^{-x / 2}$
(c) $f(x)=|x|+5$
(d) $f(x)=\ln (x+1)+2$
(e) $f(x)=\arctan (x)$
(f) $f(x)=2 \arctan (x)+\pi$
(g) $f(x)=\arccos \left(\frac{x}{2}\right)-\frac{\pi}{2}$
(h) $f(x)=\arcsin (x-5)$

Find (a) Domain of definition $(\mathcal{D}(f))$ and Range of the given function, (b) compute limits in boundary points of $\mathcal{D}(f)$.
4. $f(x)=\ln (x-\sqrt{x+1})$
5. $f(x)=\arccos \frac{1-2 x}{4}$
6. $f(x)=\ln (x+3)+\sqrt{5-2 x}$

