Eigenvalues and eigenvectors

1. Find all eigenvalues of matrix A, choose two of them and find the corresponding eigenvectors. $A=\left(\begin{array}{lll}2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2\end{array}\right)$
2. You have a 3×3 matrix, which of following statements can be true:
(a) $\lambda_{1}=2, \lambda_{2}=3$
(b) $\lambda_{1}=3, \lambda_{2}=2+i, \lambda_{3}=-2-i$
(c) $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$
(d) $\lambda_{1}=0, \lambda_{2}=i, \lambda_{3}=-i$
(e) $\lambda_{1}=2, \lambda_{2}=1, \lambda_{3}=2+i$
(f) given eigenvectors (on tutorial)
3. Find all eigenvalues of matrix A, choose two of them and find the corresponding eigenvectors.
$A=\left(\begin{array}{ccc}-2 & -2 & -9 \\ -1 & 1 & -3 \\ 1 & 1 & 4\end{array}\right)$
4. (a) Check if $\lambda_{1}=-1$ is an eigenvalue of the following matrix.
$A=\left(\begin{array}{ccc}2 & 1 & 2 \\ 5 & 2 & 6 \\ 1 & 0 & -1\end{array}\right)$
(b) Choose one of the eigenvalues and find a corresponding eigenvector.
(c) Find the eigenvalues to A^{2}, choose one of them and find the corresponding eigenvector.

Repetition

5. (a) Are vectors $(1 ; 2),(2 ; 3)$ and $(0 ; 4)$ linear independent, why?
(b) Find the parameters $a \in \mathbb{R}$ for which the following vectors form a base: $\vec{u}=(a ; 0 ; a+3), \vec{v}=(1 ; 0 ; 0)$ and $\vec{w}=(0 ; a-1 ; a)$.
(c) If possible, express vectors $\vec{b}=(1 ; 0 ;-3)$ and $\vec{c}=(2 ;-5 ; 3)$ as a linear combination of vectors \vec{u}, \vec{v} and \vec{w} for $a=1$.
6. (a) Determine how many solutions will have the following system depending on parameter $a \in \mathbb{R}$:

$$
\begin{aligned}
-x-2 y+z & =3 \\
a z+x+3 y & =2 a \\
5 y+3 x & =a
\end{aligned}
$$

(b) Find the solution for the parameter value $a=-4$.
7. Check if exists an inverse to A. If it exists, compute its determinant: $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 4 & 5\end{array}\right)$.
8. compute $A \cdot B$.
$A=\left(\begin{array}{lll}2 & 1 & 3 \\ 0 & 5 & 2\end{array}\right), B=\left(\begin{array}{ll}3 & 1 \\ 0 & 3 \\ 5 & 0\end{array}\right)$.
9. $\left|\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & -1 & -1 & 1 \\ 0 & 2 & 0 & 0 \\ -1 & -1 & 1 & 0\end{array}\right|=$?

