Determinants and applications

Compute determinants of the following matrices and decide if there are singular or not. Try to write down the rank of the matrices.

- $A_{1}=\left(\begin{array}{cc}-1 & -3 \\ -2 & 5\end{array}\right)$
- $A_{2}=\left(\begin{array}{ccc}2 & 5 & 0 \\ -1 & 7 & 1 \\ 4 & 1 & -4\end{array}\right)$
- $A_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 4 & 5\end{array}\right)$
- $A_{4}=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1\end{array}\right)$
- $A_{5}=\left(\begin{array}{ccc}1 & i & 1+i \\ -i & 1 & 0 \\ 1-i & 0 & 1\end{array}\right)$

Compute determinants of the following matrices and decide if there are singular or not:

- $A_{6}=\left(\begin{array}{cccc}0 & 5 & -2 & 3 \\ 1 & 2 & 0 & 0 \\ 5 & 2 & 3 & 2 \\ 2 & -1 & 2 & 3\end{array}\right) \quad \bullet A_{7}=\left(\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & -1 & -1 & 1 \\ a & b & 0 & 0 \\ -1 & -1 & 1 & 0\end{array}\right) \quad \bullet A_{8}=\left(\begin{array}{ccc}a & a & a \\ -a & a & x \\ -a & -a & x\end{array}\right)$

Inverse matrix and its determinant

1. Find the inverse matrix $\left(A^{-1}\right)$ and compute its determinant, $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right)$
2. Compute the determinant of an inverse matrix A^{-1} :
(a) $A=\left(\begin{array}{ccc}3 & -5 & 0 \\ 0 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$

Linear Independence of vectors with parameters

3. Find the parameter $p \in \mathbb{R}$ for which the vectors are linear independent, $\vec{u}=(3+p ; 7 ; 1), \vec{v}=(-2 ; 2 p ; 4)$ and $\vec{w}=(1 ; 0 ; 1)$
4. Find the parameter $k \in \mathbb{R}$ for which the vectors are linear independent, $\vec{u}=(k ; 1 ; 0), \vec{v}=(0 ; k-1 ; 3)$ and $\vec{w}=(0 ; 2 ; k)$
