(Linear Independence, basis, dimension.)

Write the vectors \vec{a} and \vec{b} as a linear combination of vectors \vec{u}, \vec{v} and \vec{w}. Is the expression unique?

1. $\vec{u}=(1 ; 3 ; 2), \vec{v}=(2 ;-1 ; 3), \vec{w}=(5 ; 1 ; 8)$
$\vec{a}=(3 ; 2 ; 5), \vec{b}=(5 ; 6 ; 7)$
2. $\vec{u}=(3 ; 4 ; 5), \vec{v}=(-6 ; 7 ; 0), \vec{w}=(8 ;-9 ; 1)$
$\vec{a}=(23 ;-19 ; 6), \vec{b}=(-20 ; 23 ;-1)$
3. $\vec{u}=(4 ; 0 ; 7 ; 2), \vec{v}=(3 ; 1 ; 0 ; 5), \vec{w}=(5 ; 3 ; 1 ; 0)$
$\vec{a}=(3 ; 1 ; 8 ;-8), \vec{b}=(0 ; 0 ; 0 ; 1)$

Matrices - multiplication

Compute matrix $C=A \cdot B$ and $D=B \cdot A$ if possible:
4.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 3 \\
0 & 5 & 2
\end{array}\right), \quad B=\left(\begin{array}{cccc}
3 & 1 & 2 & 4 \\
0 & 3 & 1 & 0 \\
5 & 2 & 0 & 1
\end{array}\right)
$$

5.

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right) \quad B=A^{2}
$$

6.

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) \quad B=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

7.

$$
A=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \quad B=A^{T}
$$

Compute unknowns x and $y \in \mathbb{R}$ in following equality:
8.

$$
\left(\begin{array}{cc}
x+y & -3 \\
-2 & x-y
\end{array}\right)=\left(\begin{array}{cc}
6 & -2 \\
-3 & 2
\end{array}\right)^{T}
$$

