1 Vectors: $\vec{u} \cdot \vec{v}, \vec{u} \times \vec{v}$, linear independence

1. Find $\vec{u} \cdot \vec{v}$ and $\vec{u} \times \vec{v}$. Are the vectores perpedicular?
(a) $\vec{u}=(10 ;-2 ; 3), \vec{v}=(1 ; 2 ;-1)$
(b) $\vec{u}=(-3 ; 2 ; 3), \vec{v}=(1 ; 6 ;-3)$
(c) $\vec{u}=(-2 ; p+3), \vec{v}=(0 ;-1+2 p), p \in \mathbb{R}$ parameter.
2. Given line $p: 2 x+5 y-6=0$,
(a) Find point $P \in p ; P=[?, 2]$.
(b) Write the parametric equation of the line.
(c) Find line $q ; q \perp p \quad \wedge \quad P \in q$.
3. Find the angle between given lines:
(a) $p: x=1+2 t ; y=2-3 t ; \quad t \in \mathbb{R}$ $q: x=1+k ; y=2+3 k ; \quad k \in \mathbb{R}$.
(b) $p: x=1+2 t ; y=2-3 t ; \quad t \in \mathbb{R}$ $q: x=-1-4 k ; y=7+9 k ; \quad k \in \mathbb{R}$.
4. Find vector \vec{x} which satisfies:
$2(\vec{x}+\vec{u})=3 \vec{v}+(0 ; 0 ; 2), \vec{u}=(1 ;-3 ; 0)$ and $\vec{v}=(0 ; 2 ; 1)$

2 Linear Independence, basis, dimension.

Are the following vectors Linearly Independent? What is the vector space the vectors are generating (Write the basis and dimension)?

1. $\vec{u}=(2 ; 1), \vec{v}=(-1 ; 3)$
2. $\vec{u}=(1 ; 4 ; 2), \vec{v}=(3 ; 2 ; 2)$
3. $\vec{u}=(2 ; 0 ; 3), \vec{v}=(1 ; 1 ; 0), \vec{w}=(0 ;-2 ; 1)$
4. $\vec{u}=(2 ; 3 ;-2), \vec{v}=(3 ; 0 ; 1), \vec{w}=(0 ; 9 ;-8)$
5. $\vec{a}=(2 ; 4 ; 3 ; 0), \vec{b}=(1 ; 1 ; 0 ; 0), \vec{c}=(3 ; 5 ; 3 ; 0), \vec{d}=(1 ; 0 ; 2 ; 0)$

Write the vectors \vec{a} and \vec{b} as a linear combination of vectors \vec{u}, \vec{v} and \vec{w}. Is the expression unique?
6. $\vec{u}=(1 ; 3 ; 2), \vec{v}=(2 ;-1 ; 3), \vec{w}=(5 ; 1 ; 8)$
$\vec{a}=(3 ; 2 ; 5), \vec{b}=(5 ; 6 ; 7)$
7. $\vec{u}=(3 ; 4 ; 5), \vec{v}=(-6 ; 7 ; 0), \vec{w}=(8 ;-9 ; 1)$
$\vec{a}=(23 ;-19 ; 6), \vec{b}=(-20 ; 23 ;-1)$
8. $\vec{u}=(4 ; 0 ; 7 ; 2), \vec{v}=(3 ; 1 ; 0 ; 5), \vec{w}=(5 ; 3 ; 1 ; 0)$
$\vec{a}=(3 ; 1 ; 8 ;-8), \vec{b}=(0 ; 0 ; 0 ; 1)$

