Taylor's polynomial

Write Taylor's polynomial of degree n of function f at point x_0 .

- 1. $f(x) = \cos x^2$, $n = 3 \text{ and } x_0 = \sqrt{\pi}$
- 2. $f(x) = \ln(x+1)$, n = 4 and $x_0 = 0$
- 3. $f(x) = (2x+1) \ln x$, n = 2 and $x_0 = 1$
- 4. $f(x) = (x+1)e^x$, n = 3 and $x_0 = 0$, also write the formula for the remainder R after the n-th term.

Write (a) Taylor's polynomial of degree n of function f at point x_0 , (b) write the formula for the remainder R after the n-th term.

(c) By using this calculate approximately the functional value $f(x_1) \doteq ?$ and estimate the error of your approximation:

5. $f(x) = e^{3x}$, $n = 4, x_0 = 0$ and $x_1 = 0.1$ 6. $f(x) = \sqrt{6 - 3x}$, $n = 2, x_0 = -1$ and $x_1 = -1.1$

Calculate approximately with the accuracy of ϵ :

7. ln 1.2,
$$\epsilon = 10^{-3}$$

8. $\sqrt[3]{1.5}, \quad \epsilon = 10^{-2}$