Taylor's polynomial

Write Taylor's polynomial of degree n of function f at point x_{0}.

1. $f(x)=\cos x^{2}, \quad n=3$ and $x_{0}=\sqrt{\pi}$
2. $f(x)=\ln (x+1), \quad n=4$ and $x_{0}=0$
3. $f(x)=(2 x+1) \ln x, \quad n=2$ and $x_{0}=1$
4. $f(x)=(x+1) e^{x}, \quad n=3$ and $x_{0}=0$, also write the formula for the remainder R after the n-th term.

Write (a) Taylor's polynomial of degree n of function f at point x_{0}, (b) write the formula for the remainder R after the n-th term.
(c) By using this calculate approximately the functional value $f\left(x_{1}\right) \doteq$? and estimate the error of your approximation:
5. $f(x)=e^{3 x}, \quad n=4, x_{0}=0$ and $x_{1}=0.1$
6. $f(x)=\sqrt{6-3 x}, \quad n=2, x_{0}=-1$ and $x_{1}=-1.1$

Calculate approximately with the accuracy of ϵ :
7. $\ln 1.2, \quad \epsilon=10^{-3}$
8. $\sqrt[3]{1.5}, \quad \epsilon=10^{-2}$

