(SLAE)

Find a parameter $p \in \mathbb{R}$ for which the system has non-trivial (not only zero) solution:

$$
\begin{aligned}
p x+4 y+7 z & =0 \\
3 x-4 y+5 z & =0 \\
x+p y+4 z & =0
\end{aligned}
$$

Eigenvalues and eigenvectors

(1. - 5.) Find the eigenvalues and eigenvectors to the given matrix

1. $\left(\begin{array}{ll}3 & 4 \\ 5 & 2\end{array}\right)$
2. $\left(\begin{array}{cc}0 & 5 \\ -5 & 0\end{array}\right)$
3. $\left(\begin{array}{ccc}3 & 1 & 0 \\ -13 & -1 & 0 \\ 4 & -8 & -2\end{array}\right)$
4. $\left(\begin{array}{ccc}4 & -5 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right)$
5. $\left(\begin{array}{lll}2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2\end{array}\right)$
(6.) You have a 3×3 matrix, which of following statements can be true:
(a) $\lambda_{1}=2, \lambda_{2}=3$
(b) $\lambda_{1}=3, \lambda_{2}=2+i, \lambda_{2}=-2-i$
(c) $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$
(d) $\lambda_{1}=0, \lambda_{2}=i, \lambda_{2}=-i$
(e) $\lambda_{1}=2, \lambda_{2}=1, \lambda_{2}=2+i$
(f) given eigenvectors (on tutorial)
6. Find all eigenvalues of matrix A, choose two of them and find the corresponding eigenvectors.
$A=\left(\begin{array}{ccc}-2 & -2 & -9 \\ -1 & 1 & -3 \\ 1 & 1 & 4\end{array}\right)$
7. (a) Check if $\lambda_{1}=-1$ is an eigenvalue of the following matrix.
$A=\left(\begin{array}{ccc}2 & 1 & 2 \\ 5 & 2 & 6 \\ 1 & 0 & -1\end{array}\right)$
(c) Choose one of the eigenvalues and find a corresponding eigenvector.
(b) Find the eigenvalues to A^{2}, choose one of them and find the corresponding eigenvector.
