$P(u,v)=(3u,v(1+u),(1-v^2)(1-u)), (u,v)\in[0,1]^2$
$P_0(u)=(3u,0,1-u),\ P_1(u)=(3u,1+u,0), u\in[0,1]$
$P^u(u,v)=(3,v,v^2-1)$
$P^v(u,v)=(0,1+u,2v(u-1))$
$P^{uv}(u,v)=(0,1,2v)$
$P_{0,0}=(0,0,1),P_{0,1}=(0,1,0), P_{1,0}=(3,0,0), P_{1,1}=(3,2,0)$
$P^u(0,0)=(3,0,-1),\ P^v(0,0)=(0,1,0)$
$P^u(0,1)=(3,1,0), \ P^v(0,1)=(0,1,-2)$
$P^u(1,0)=(3,0,-1), \ P^v(1,0)=(0,2,0)$
$P^u(1,1)=(3,1,0), \ P^v(1,1)=(0,2,0)$
$P^{uv}(0,0)=(0,1,0)$
$P^{uv}(0,1)=(0,1,2)$
$P^{uv}(1,0)=(0,1,0)$
$P^{uv}(1,1)=(0,1,2)$