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Motivation

Full models:
solve the equations exactly

usually computationally expensive

Surrogate (approximate) models:
similar behaviour to the original model

computationally cheaper

Neural network:
highly nonlinear function with free parameters

the parameters are set to minimize the loss function

hight speed of evaluation

can be used as both cases: as a full or surrogate model
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Neural network libraries

Keras + Tensorflow:
excellent high-level API

easy to learn with a simple way to build new architectures

highly parallel pipelines with great scalability

support for GPU, CPU and TPU

trained models could by exported and used by different programming languages

PyTorch:
easy to learn

developed natively in Python

support for GPU and CPU
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Convolution neural network
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Convolution layer - convolution operation

convolution kernels (filters) slide along input features and provide responses known as
feature maps

shift (space) invariant
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Convolution layer - stride, kernel size, dilation

stride governs how many cells the filter is moved in the input to calculate the next cell in
the result

larger kernel size leads to better results, but the number of unknowns increases
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Convolution layer - padding

valid - the dimension of the outgoing feature map is reduced by the kernel size

same - output feature map has the same dimensions
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Convolution layer - examples

 0, 0, 0
1, 0,−1
0, 0, 0



 0, 1, 0
0, 0, 0
0,−1, 0

 1

9

1, 1, 11, 1, 1
1, 1, 1



Deep Learning in CFD 8 / 72



Convolution layer - volume operation

when the input has more than one channels, the filter should have matching number of
channels

to calculate one output cell, convolution is performed on each matching channel, and the
results are add together
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Convolution layer

tensorflow.keras.layers.Conv2D(filters, frame, activation, padding)

a bias is added

activation function such is applied
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Pooling layer

tf.keras.layers.MaxPooling2D(pool_size, strides, padding)

tf.keras.layers.AveragePooling2D(pool_size, strides, padding)

reduce dimensions

max pooling - get max number

average pooling - get average number
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Flatten layer

tf.keras.layers.Flatten()

used to convert the data into 1D arrays to create a single feature vector

forward the data to a fully connected layer
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Dense layer

tf.keras.layers.Dense(units, activation)

fully connected layers connect every neuron in one layer to every neuron in another layer

the flattened matrix goes through a fully connected layer to classify the images

Neuron:
Activation functions:

ReLU(x) = max(0, x)

ELU(x) =

{
x, if x ≥ 0

α (ex − 1) , otherwise

Leaky ReLU(x) = max(0.1x, x)
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Convolution neural network

used for image/object recognition and classification

convolutional layer reduces the high dimensionality of images without losing its information
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Convolution neural network - training

The training sample has two part:
Input: matrix representing image

Output: probability vector [0, 0, . . . , 1, . . . , 0]

Three sets of samples need to be prepared:
training set - used for training

validation set - used for error monitoring

test set - used for testing

The loss function is usually defined as a mean square error between
the predicted and desired output

The gradient descent method is used for loss function minimization

Various optimizers can be used to get better learning rate: RMSprop,
Adam, SGD, ...
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Convolution neural network - examples

handwritten digit recognition

from Gradient-Based Learning Applied to Document Recognition paper by Y. Lecun, L.
Bottou, Y. Bengio and P. Haffner (1998)

image recognition

from ImageNet Classification with Deep Convolutional Neural Networks paper by Alex
Krizhevsky, Geoffrey Hinton, and Ilya Sutskever (2012)
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Convolution neural network - shape classificatory

image resolution: 128x128

1000 random circle/square samples
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Convolution neural network - shape classificatory
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Convolution neural network - Example

trained model was exported to the javascript

simple node web server was created

the image is generated on the frontend

the prediction is realized using the node in the backend

the result is send back to the frontend
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Convolution neural network - butterfly classification

Input: coloured picture 64 x 64 pixels

Output: probability vector

Considered butterflies:
Babočka admirál - Vanessa atalanta
Babočka b́ılé c - Polygonia c album
Babočka bodláková - Vanessa cardui
Babočka jilmová - Nymphalis polychloros
Babočka kop̌rivová - Aglais urticae
Babočka osiková - Nymphalis antiopa
Babočka pav́ı oko - Inachis io
Babočka śıt’kovaná - Araschnia levana
Babočka vrbová - Nymphalis xanthomelas

Training set
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Encoder-decoder and U-Net
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Up sampling layer

tf.keras.layers.UpSampling2D(size)

increases the dimensions
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Encoder-decoder, Autoencoder and U-Net

The output has the same character as the input

Encoder-decoder:
image recognition, detection, and segmentation

U-net:
is Encoder-decoder with skip connection

Autoencoder:
encoder-decoder with unsupervised learning

is trained to copy its input to its output

used for image denoising, and anomaly detection
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Prediction of steady flow field around airfoil
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Neural Network in CFD - Convolution Neural Network

Guo, X., Li, W., Iorio, F. Convolutional neural networks for steady flow approximation
(2016) Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 13-17-August-2016, pp. 481-490. (419 citation)

Convolution Neural Network was trained on the set of lattice Boltzmann simulations to
produce the solution according to the boundary information
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Problem setup

Inviscid fluid flow around airfoil, angle of attack α = 0, Mach number M∞ = 0.4

Structured C-mesh with 64 x 32 points, generated by elliptic mesh generator

Airfoil shape is described using the Bezier curve with 8 control points

First and last points are fixed on the airfoil tail

Set of 1866 airfoils for various control points positions was created

Lift coefficient

cL =
∮
Γ

p ny dl
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Convolution Neural Network Architecture

Input: C-mesh with 64 x 32 points

Output: flow field (ϱ, p, ux , uy )

106 324 trainable parameters

Trained on the set of 1866 airfoils

Keras and TensorFlow libraries, python interface
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Convolution Neural Network - keras model
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Results - Tests NACA Airfoils

0012 0020 0030 2412

4412 6615 8607 9210
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Results - Flow Field (top DNN, bottom CFD)

pressure x-velocity y-velocity
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Results - Pressure

0012 α = 0◦ α = 5◦ α = 10◦

4412 α = 0◦ α = 5◦ α = 10◦
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Results - Errors

Absolute error
∣∣cCFDL − cCNNL

∣∣ x103
α\airfoil 0012 0020 0030 2412 4412 6615 8607 9210

0 0.88 1.52 0.87 0.67 0.34 2.38 1.99 2.26
5 0.93 0.85 0.69 1.57 0.13 3.50 0.96 1.39
10 1.97 0.57 2.68 2.08 2.02 5.37 0.59 0.31
20 4.82 2.93 3.82 4.67 3.98 4.25 4.44 1.72

Relative error

∣∣∣cCFDL −cCNN
L

∣∣∣
|cCFDL | x100

α\airfoil 0012 0020 0030 2412 4412 6615 8607 9210
0 - - - 7.00 1.78 9.71 5.91 5.08
5 2.57 2.63 2.60 3.45 0.24 6.12 2.07 4.76
10 2.89 0.93 5.30 2.71 2.39 6.29 0.75 0.56
20 4.51 3.00 4.54 4.11 3.32 3.52 3.88 1.92
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Conclusion

Structured mesh with 64 x 32 = 2048 cells

The test set of 1866 NACA airfoils

CFD solution:

DG method (FlowPro)

First order of spatial accuracy

Total CPU time of 1866 airfoils: 4.5hour

CPU time of one solution: 8.7s

(CPU time for the second order solution:
26s)

CNN solution:

Total CPU time of 1866 airfoils: 10.7s

CPU time of one solution: 0.0057s

The convolution neural network provides 1500 times faster solution than
classical CFD solver. (possible 4500 times faster than second order solution)
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Prediction of steady flow field in cascade,
parametrization
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Main Neural Network Architecture - U-net
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Main Neural Network Architecture - Convolution With Periodic Padding
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Problem Setup

Laminar fluid flow in blade cascade, angle of attack α = 10◦

Mach numbers Ma = 0.9

Reynolds numbers Re = 10000

Structured grid with 64 x 32 points, generated by elliptic mesh generator

Periodic boundary condition

Blade shape is described by cubic spline with 6 control points

Deep Learning in CFD 37 / 72



Neural Network - Summary

Input tensor [nspec , n1, n2, 3], (X ,Y ,walls) grid coordinates and wall markers
(n1 = 64 x 32 = n2 points)

Output tensor [nspec , n1, n2, 4]: flow field (ux , uy , p, ϱ)

402 928 trainable parameters

Trained on the set of 136 random airfoils

Keras and TensorFlow libraries, Python interface
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Convolution Neural Network - keras model
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Convolution Neural Network - periodic padding function
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Application - Blade Optimization

Blade profile optimization for the inlet Mach number M = 0.95

Target functional: max(f (x)), f (x) = cL(x)
1+cD (x)

, cL =
∮
Γ p ny , cD =

∮
Γ p nx

Algorithm of optimization:

First step roughly search the state space - 94 = 6561 combinations of control points
- 13.3s of CPU time
Second step perform 100 steps of gradient descent method - 32s of CPU time
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Application - Blade Optimization

Comparison of flow fields for optimal blade

FlowPro (CFD software) Neural network prediction
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Parametrization

How to include parameters in the neural network?

In general, the sooner is the better
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Hyper Neural Network

Used for parametrization of a main network

Main network is trained for all combinations of flow parameters and resulting
weights are stored

Map flow parameters into main neural network weights

Dense neural network - one hidden layer

Deep Learning in CFD 44 / 72



Hyper Neural Network - Single Parameter Re

name symbol value

heat capacity ratio κ 1.4
Training Reynolds numbers Re 100, 500, 1000
Prandtl number Pr 0.72
pressure ratio pout/pin0 0.843
angle of attack α 15◦

Re
Drag Lift

average err [%] SD average err [%] SD

100 1.9 1.2 1.1 0.5

250 3.6 3.7 4.1 1.3

500 3.9 1.4 2.4 1.4

750 3.3 2.3 2.7 2.0

1000 2.9 1.7 3.0 2.3
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Hyper Neural Network - Single Parameter Re

Re = 100 Re = 250 Re = 500
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Hyper Neural Network - Single Parameter Re

Re = 750 Re = 1000
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Prediction of unsteady flow field
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Neural Network in CFD - Convolution Neural Network

Hennigh, O., Lat-Net: Compressing Lattice Boltzmann Flow Simulations using Deep
Neural Networks. (2017) arXiv e-prints arXiv:1705.09036 (61 citation)

Time dependent solution compared with lattice Boltzmann simulation
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Neural network architecture

The architecture is same as in the case of prediction steady flow field

The solution of n time level is added as another input

If the mesh is moving, the points coordinates in n+ 1 time level are also added as another
input

The outpus is the solution at n + 1 time level
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Unsteady flow field prediction
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Flow field prediction with moving mesh
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Vortex induced vibrations

Structure equation of motion:

ÿ + 2 ζ ωn ẏ + ω2
n y =

L

m

Lift force:

L =

∮
Γ
(σxx nx + σyx ny ) dS

Parameters:
Damping ratio: ζ = c

2mωn

Stiffness: k = mω2
n

Mass: m = 10

Damping: c = 0.25

Natural frequency: fn = ωn
2π

= fSt

Strouhal frequency:
fSt = µ

ϱ∞L2
0.212(Re − 21.2)

Convolution neural network predict
unsteady flow-field with moving boundary

Training frequencies and amplitudes:

Convolution neural network architecture:
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Vortex induced vibrations

CNN predicted unsteady flow field
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Observation

The output values must be scaled to a range of around ±1
for example: velocity range [0, 400] ms−1 or pressure range [8e5, 1e6] Pa

it is advantageous to consider the equations in dimensionless form

If more outputs are present, their scales must be comparable
for example: dimensionless velocity range [0, 1] is not comparable with dimensionless
pressure range [0.85, 1]

either the data must be rescaled or the weights in the loss function must be taken
into account

The input values scale must be comparable
for example: Mach number [0.1, 1] is not comparable with Reynolds number
[100, 1e6]

instead of the real value the logarithm is taken log10(Re) = [2, 6]
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Physic Informed Neural Network
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Neural Network in CFD - Physic Informed Neural Network

Raissi M., Perdikaris P., Karniadakis G., Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics, 2019, 378, pp. 686â¿“707
(2148 citation)

Fully connected deep neural network is used for the solution approximation

The loss function is computed according to PDE

Deep Learning in CFD 57 / 72



Motivation

Consider neural network as a solution function

Use PDE in classical or weak form, together with boundary condition for evaluation of loss
function ⇒ no need of any train data

Boundary value problem:

L
(
u,

∂u

∂xi
,

∂2
u

∂xi∂xj
, . . .

)
= 0, x ∈ Ω

u = u0, x ∈ ΓD

∂u

∂xi
ni = c, x ∈ ΓN

.

.

.

Dense neural network:

Neuron:
Activation functions:

sigmoid(x) =
1

1 + e−x

swish(x) =
x

1 + e−x

mish(x) = x tanh(1 + ex )
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Neural network architecture - dense neural network
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Neural network architecture - gradient layer
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Neural network architecture - PINN
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PINN layers in code
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Problem setup

Equations:

∂u

∂x
+

∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
,

u
∂v

∂x
+ v

∂v

∂y
+

∂p

∂v
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)

Boundary conditions:
inlet: u = 1, v = 0

outlet: p = 0

wall: u = 0, v = 0

Control points:
10000 equations points

100 inlet points

100 outlet points

700 wall points
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Results - Re = 10

PINN CFD difference
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Results - Re = 100

PINN CFD difference
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Convergence

Dense net
[4,2,2,4]

28 unknowns

Error 2.173
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Convergence

Dense net
[8,4,4,8]

96 unknowns

Error 2.064
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Convergence

Dense net
[16,8,8,16]

352 unknowns

Error 0.140
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Convergence

Dense net
[32,16,16,32]

1344 unknowns

Error 0.051
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Convergence

Dense net
[64,32,32,64]

5248 unknowns

Error 0.036
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Convergence

Dense net
[128,64,64,128]

20736 unknowns

Error - referential
solution
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Conclusion

The loss function is the key to creating a good model.

In physical modelling, the construction of the loss function can be
made with the help of:

partial differential equations

conservation laws (integral form)

constitutive laws

...

If the loss function does not depend on the training data, the neural
network can be said to be a full model.

The next goal will be to bring physics to the loss function of a
convolutional network.
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