
Deep Learning in CFD

Onďrej Bubĺık

NTIS - New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia

December 2022

Deep Learning in CFD 1 / 72

Motivation

Full models:
solve the equations exactly

usually computationally expensive

Surrogate (approximate) models:
similar behaviour to the original model

computationally cheaper

Neural network:
highly nonlinear function with free parameters

the parameters are set to minimize the loss function

hight speed of evaluation

can be used as both cases: as a full or surrogate model

Deep Learning in CFD 2 / 72

Neural network libraries

Keras + Tensorflow:
excellent high-level API

easy to learn with a simple way to build new architectures

highly parallel pipelines with great scalability

support for GPU, CPU and TPU

trained models could by exported and used by different programming languages

PyTorch:
easy to learn

developed natively in Python

support for GPU and CPU

Deep Learning in CFD 3 / 72

Convolution neural network

Deep Learning in CFD 4 / 72

Convolution layer - convolution operation

convolution kernels (filters) slide along input features and provide responses known as
feature maps

shift (space) invariant

Deep Learning in CFD 5 / 72

Convolution layer - stride, kernel size, dilation

stride governs how many cells the filter is moved in the input to calculate the next cell in
the result

larger kernel size leads to better results, but the number of unknowns increases

Deep Learning in CFD 6 / 72

Convolution layer - padding

valid - the dimension of the outgoing feature map is reduced by the kernel size

same - output feature map has the same dimensions

Deep Learning in CFD 7 / 72

Convolution layer - examples

 0, 0, 0
1, 0,−1
0, 0, 0



 0, 1, 0
0, 0, 0
0,−1, 0

 1

9

1, 1, 11, 1, 1
1, 1, 1



Deep Learning in CFD 8 / 72

Convolution layer - volume operation

when the input has more than one channels, the filter should have matching number of
channels

to calculate one output cell, convolution is performed on each matching channel, and the
results are add together

Deep Learning in CFD 9 / 72

Convolution layer

tensorflow.keras.layers.Conv2D(filters, frame, activation, padding)

a bias is added

activation function such is applied

Deep Learning in CFD 10 / 72

Pooling layer

tf.keras.layers.MaxPooling2D(pool_size, strides, padding)

tf.keras.layers.AveragePooling2D(pool_size, strides, padding)

reduce dimensions

max pooling - get max number

average pooling - get average number

Deep Learning in CFD 11 / 72

Flatten layer

tf.keras.layers.Flatten()

used to convert the data into 1D arrays to create a single feature vector

forward the data to a fully connected layer

Deep Learning in CFD 12 / 72

Dense layer

tf.keras.layers.Dense(units, activation)

fully connected layers connect every neuron in one layer to every neuron in another layer

the flattened matrix goes through a fully connected layer to classify the images

Neuron:
Activation functions:

ReLU(x) = max(0, x)

ELU(x) =

{
x, if x ≥ 0

α (ex − 1) , otherwise

Leaky ReLU(x) = max(0.1x, x)

Deep Learning in CFD 13 / 72

Convolution neural network

used for image/object recognition and classification

convolutional layer reduces the high dimensionality of images without losing its information

Deep Learning in CFD 14 / 72

Convolution neural network - training

The training sample has two part:
Input: matrix representing image

Output: probability vector [0, 0, . . . , 1, . . . , 0]

Three sets of samples need to be prepared:
training set - used for training

validation set - used for error monitoring

test set - used for testing

The loss function is usually defined as a mean square error between
the predicted and desired output

The gradient descent method is used for loss function minimization

Various optimizers can be used to get better learning rate: RMSprop,
Adam, SGD, ...

Deep Learning in CFD 15 / 72

Convolution neural network - examples

handwritten digit recognition

from Gradient-Based Learning Applied to Document Recognition paper by Y. Lecun, L.
Bottou, Y. Bengio and P. Haffner (1998)

image recognition

from ImageNet Classification with Deep Convolutional Neural Networks paper by Alex
Krizhevsky, Geoffrey Hinton, and Ilya Sutskever (2012)

Deep Learning in CFD 16 / 72

Convolution neural network - shape classificatory

image resolution: 128x128

1000 random circle/square samples

Deep Learning in CFD 17 / 72

Convolution neural network - shape classificatory

Deep Learning in CFD 18 / 72

Convolution neural network - Example

trained model was exported to the javascript

simple node web server was created

the image is generated on the frontend

the prediction is realized using the node in the backend

the result is send back to the frontend

Deep Learning in CFD 19 / 72

Convolution neural network - butterfly classification

Input: coloured picture 64 x 64 pixels

Output: probability vector

Considered butterflies:
Babočka admirál - Vanessa atalanta
Babočka b́ılé c - Polygonia c album
Babočka bodláková - Vanessa cardui
Babočka jilmová - Nymphalis polychloros
Babočka kop̌rivová - Aglais urticae
Babočka osiková - Nymphalis antiopa
Babočka pav́ı oko - Inachis io
Babočka śıt’kovaná - Araschnia levana
Babočka vrbová - Nymphalis xanthomelas

Training set

Deep Learning in CFD 20 / 72

Encoder-decoder and U-Net

Deep Learning in CFD 21 / 72

Up sampling layer

tf.keras.layers.UpSampling2D(size)

increases the dimensions

Deep Learning in CFD 22 / 72

Encoder-decoder, Autoencoder and U-Net

The output has the same character as the input

Encoder-decoder:
image recognition, detection, and segmentation

U-net:
is Encoder-decoder with skip connection

Autoencoder:
encoder-decoder with unsupervised learning

is trained to copy its input to its output

used for image denoising, and anomaly detection

Deep Learning in CFD 23 / 72

Prediction of steady flow field around airfoil

Deep Learning in CFD 24 / 72

Neural Network in CFD - Convolution Neural Network

Guo, X., Li, W., Iorio, F. Convolutional neural networks for steady flow approximation
(2016) Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 13-17-August-2016, pp. 481-490. (419 citation)

Convolution Neural Network was trained on the set of lattice Boltzmann simulations to
produce the solution according to the boundary information

Deep Learning in CFD 25 / 72

Problem setup

Inviscid fluid flow around airfoil, angle of attack α = 0, Mach number M∞ = 0.4

Structured C-mesh with 64 x 32 points, generated by elliptic mesh generator

Airfoil shape is described using the Bezier curve with 8 control points

First and last points are fixed on the airfoil tail

Set of 1866 airfoils for various control points positions was created

Lift coefficient

cL =
∮
Γ

p ny dl

Deep Learning in CFD 26 / 72

Convolution Neural Network Architecture

Input: C-mesh with 64 x 32 points

Output: flow field (ϱ, p, ux , uy)

106 324 trainable parameters

Trained on the set of 1866 airfoils

Keras and TensorFlow libraries, python interface

Deep Learning in CFD 27 / 72

Convolution Neural Network - keras model

Deep Learning in CFD 28 / 72

Results - Tests NACA Airfoils

0012 0020 0030 2412

4412 6615 8607 9210

Deep Learning in CFD 29 / 72

Results - Flow Field (top DNN, bottom CFD)

pressure x-velocity y-velocity

Deep Learning in CFD 30 / 72

Results - Pressure

0012 α = 0◦ α = 5◦ α = 10◦

4412 α = 0◦ α = 5◦ α = 10◦

Deep Learning in CFD 31 / 72

Results - Errors

Absolute error
∣∣cCFDL − cCNNL

∣∣ x103
α\airfoil 0012 0020 0030 2412 4412 6615 8607 9210

0 0.88 1.52 0.87 0.67 0.34 2.38 1.99 2.26
5 0.93 0.85 0.69 1.57 0.13 3.50 0.96 1.39
10 1.97 0.57 2.68 2.08 2.02 5.37 0.59 0.31
20 4.82 2.93 3.82 4.67 3.98 4.25 4.44 1.72

Relative error

∣∣∣cCFDL −cCNN
L

∣∣∣
|cCFDL | x100

α\airfoil 0012 0020 0030 2412 4412 6615 8607 9210
0 - - - 7.00 1.78 9.71 5.91 5.08
5 2.57 2.63 2.60 3.45 0.24 6.12 2.07 4.76
10 2.89 0.93 5.30 2.71 2.39 6.29 0.75 0.56
20 4.51 3.00 4.54 4.11 3.32 3.52 3.88 1.92

Deep Learning in CFD 32 / 72

Conclusion

Structured mesh with 64 x 32 = 2048 cells

The test set of 1866 NACA airfoils

CFD solution:

DG method (FlowPro)

First order of spatial accuracy

Total CPU time of 1866 airfoils: 4.5hour

CPU time of one solution: 8.7s

(CPU time for the second order solution:
26s)

CNN solution:

Total CPU time of 1866 airfoils: 10.7s

CPU time of one solution: 0.0057s

The convolution neural network provides 1500 times faster solution than
classical CFD solver. (possible 4500 times faster than second order solution)

Deep Learning in CFD 33 / 72

Prediction of steady flow field in cascade,
parametrization

Deep Learning in CFD 34 / 72

Main Neural Network Architecture - U-net

Deep Learning in CFD 35 / 72

Main Neural Network Architecture - Convolution With Periodic Padding

Deep Learning in CFD 36 / 72

Problem Setup

Laminar fluid flow in blade cascade, angle of attack α = 10◦

Mach numbers Ma = 0.9

Reynolds numbers Re = 10000

Structured grid with 64 x 32 points, generated by elliptic mesh generator

Periodic boundary condition

Blade shape is described by cubic spline with 6 control points

Deep Learning in CFD 37 / 72

Neural Network - Summary

Input tensor [nspec , n1, n2, 3], (X ,Y ,walls) grid coordinates and wall markers
(n1 = 64 x 32 = n2 points)

Output tensor [nspec , n1, n2, 4]: flow field (ux , uy , p, ϱ)

402 928 trainable parameters

Trained on the set of 136 random airfoils

Keras and TensorFlow libraries, Python interface

Deep Learning in CFD 38 / 72

Convolution Neural Network - keras model

Deep Learning in CFD 39 / 72

Convolution Neural Network - periodic padding function

Deep Learning in CFD 40 / 72

Application - Blade Optimization

Blade profile optimization for the inlet Mach number M = 0.95

Target functional: max(f (x)), f (x) = cL(x)
1+cD (x)

, cL =
∮
Γ p ny , cD =

∮
Γ p nx

Algorithm of optimization:

First step roughly search the state space - 94 = 6561 combinations of control points
- 13.3s of CPU time
Second step perform 100 steps of gradient descent method - 32s of CPU time

Deep Learning in CFD 41 / 72

Application - Blade Optimization

Comparison of flow fields for optimal blade

FlowPro (CFD software) Neural network prediction

Deep Learning in CFD 42 / 72

Parametrization

How to include parameters in the neural network?

In general, the sooner is the better

Deep Learning in CFD 43 / 72

Hyper Neural Network

Used for parametrization of a main network

Main network is trained for all combinations of flow parameters and resulting
weights are stored

Map flow parameters into main neural network weights

Dense neural network - one hidden layer

Deep Learning in CFD 44 / 72

Hyper Neural Network - Single Parameter Re

name symbol value

heat capacity ratio κ 1.4
Training Reynolds numbers Re 100, 500, 1000
Prandtl number Pr 0.72
pressure ratio pout/pin0 0.843
angle of attack α 15◦

Re
Drag Lift

average err [%] SD average err [%] SD

100 1.9 1.2 1.1 0.5

250 3.6 3.7 4.1 1.3

500 3.9 1.4 2.4 1.4

750 3.3 2.3 2.7 2.0

1000 2.9 1.7 3.0 2.3

Deep Learning in CFD 45 / 72

Hyper Neural Network - Single Parameter Re

Re = 100 Re = 250 Re = 500

Deep Learning in CFD 46 / 72

Hyper Neural Network - Single Parameter Re

Re = 750 Re = 1000

Deep Learning in CFD 47 / 72

Prediction of unsteady flow field

Deep Learning in CFD 48 / 72

Neural Network in CFD - Convolution Neural Network

Hennigh, O., Lat-Net: Compressing Lattice Boltzmann Flow Simulations using Deep
Neural Networks. (2017) arXiv e-prints arXiv:1705.09036 (61 citation)

Time dependent solution compared with lattice Boltzmann simulation

Deep Learning in CFD 49 / 72

Neural network architecture

The architecture is same as in the case of prediction steady flow field

The solution of n time level is added as another input

If the mesh is moving, the points coordinates in n+ 1 time level are also added as another
input

The outpus is the solution at n + 1 time level

Deep Learning in CFD 50 / 72

Unsteady flow field prediction

Deep Learning in CFD 51 / 72

Flow field prediction with moving mesh

Deep Learning in CFD 52 / 72

Vortex induced vibrations

Structure equation of motion:

ÿ + 2 ζ ωn ẏ + ω2
n y =

L

m

Lift force:

L =

∮
Γ
(σxx nx + σyx ny) dS

Parameters:
Damping ratio: ζ = c

2mωn

Stiffness: k = mω2
n

Mass: m = 10

Damping: c = 0.25

Natural frequency: fn = ωn
2π

= fSt

Strouhal frequency:
fSt = µ

ϱ∞L2
0.212(Re − 21.2)

Convolution neural network predict
unsteady flow-field with moving boundary

Training frequencies and amplitudes:

Convolution neural network architecture:

Deep Learning in CFD 53 / 72

Vortex induced vibrations

CNN predicted unsteady flow field

Deep Learning in CFD 54 / 72

Observation

The output values must be scaled to a range of around ±1
for example: velocity range [0, 400] ms−1 or pressure range [8e5, 1e6] Pa

it is advantageous to consider the equations in dimensionless form

If more outputs are present, their scales must be comparable
for example: dimensionless velocity range [0, 1] is not comparable with dimensionless
pressure range [0.85, 1]

either the data must be rescaled or the weights in the loss function must be taken
into account

The input values scale must be comparable
for example: Mach number [0.1, 1] is not comparable with Reynolds number
[100, 1e6]

instead of the real value the logarithm is taken log10(Re) = [2, 6]

Deep Learning in CFD 55 / 72

Physic Informed Neural Network

Deep Learning in CFD 56 / 72

Neural Network in CFD - Physic Informed Neural Network

Raissi M., Perdikaris P., Karniadakis G., Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics, 2019, 378, pp. 686â¿“707
(2148 citation)

Fully connected deep neural network is used for the solution approximation

The loss function is computed according to PDE

Deep Learning in CFD 57 / 72

Motivation

Consider neural network as a solution function

Use PDE in classical or weak form, together with boundary condition for evaluation of loss
function ⇒ no need of any train data

Boundary value problem:

L
(
u,

∂u

∂xi
,

∂2
u

∂xi∂xj
, . . .

)
= 0, x ∈ Ω

u = u0, x ∈ ΓD

∂u

∂xi
ni = c, x ∈ ΓN

.

.

.

Dense neural network:

Neuron:
Activation functions:

sigmoid(x) =
1

1 + e−x

swish(x) =
x

1 + e−x

mish(x) = x tanh(1 + ex)

Deep Learning in CFD 58 / 72

Motivation

Consider neural network as a solution function

Use PDE in classical or weak form, together with boundary condition for evaluation of loss
function ⇒ no need of any train data

Boundary value problem:

L
(
u,

∂u

∂xi
,

∂2
u

∂xi∂xj
, . . .

)
= 0, x ∈ Ω

u = u0, x ∈ ΓD

∂u

∂xi
ni = c, x ∈ ΓN

.

.

.

Dense neural network:

Neuron:
Activation functions:

sigmoid(x) =
1

1 + e−x

swish(x) =
x

1 + e−x

mish(x) = x tanh(1 + ex)

Deep Learning in CFD 58 / 72

Motivation

Consider neural network as a solution function

Use PDE in classical or weak form, together with boundary condition for evaluation of loss
function ⇒ no need of any train data

Boundary value problem:

L
(
u,

∂u

∂xi
,

∂2
u

∂xi∂xj
, . . .

)
= 0, x ∈ Ω

u = u0, x ∈ ΓD

∂u

∂xi
ni = c, x ∈ ΓN

.

.

.

Dense neural network:

Neuron:
Activation functions:

sigmoid(x) =
1

1 + e−x

swish(x) =
x

1 + e−x

mish(x) = x tanh(1 + ex)

Deep Learning in CFD 58 / 72

Neural network architecture - dense neural network

Deep Learning in CFD 59 / 72

Neural network architecture - gradient layer

Deep Learning in CFD 60 / 72

Neural network architecture - PINN

Deep Learning in CFD 61 / 72

PINN layers in code

Deep Learning in CFD 62 / 72

Problem setup

Equations:

∂u

∂x
+

∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
,

u
∂v

∂x
+ v

∂v

∂y
+

∂p

∂v
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)

Boundary conditions:
inlet: u = 1, v = 0

outlet: p = 0

wall: u = 0, v = 0

Control points:
10000 equations points

100 inlet points

100 outlet points

700 wall points

Deep Learning in CFD 63 / 72

Results - Re = 10

PINN CFD difference

Deep Learning in CFD 64 / 72

Results - Re = 100

PINN CFD difference

Deep Learning in CFD 65 / 72

Convergence

Dense net
[4,2,2,4]

28 unknowns

Error 2.173

Deep Learning in CFD 66 / 72

Convergence

Dense net
[8,4,4,8]

96 unknowns

Error 2.064

Deep Learning in CFD 67 / 72

Convergence

Dense net
[16,8,8,16]

352 unknowns

Error 0.140

Deep Learning in CFD 68 / 72

Convergence

Dense net
[32,16,16,32]

1344 unknowns

Error 0.051

Deep Learning in CFD 69 / 72

Convergence

Dense net
[64,32,32,64]

5248 unknowns

Error 0.036

Deep Learning in CFD 70 / 72

Convergence

Dense net
[128,64,64,128]

20736 unknowns

Error - referential
solution

Deep Learning in CFD 71 / 72

Conclusion

The loss function is the key to creating a good model.

In physical modelling, the construction of the loss function can be
made with the help of:

partial differential equations

conservation laws (integral form)

constitutive laws

...

If the loss function does not depend on the training data, the neural
network can be said to be a full model.

The next goal will be to bring physics to the loss function of a
convolutional network.

Deep Learning in CFD 72 / 72

	Convolution neural network
	Encoder-decoder and U-Net
	Prediction of steady flow field around airfoil
	Prediction of steady flow field in cascade, parametrization
	Prediction of unsteady flow field
	Physic Informed Neural Network

