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Ingredients

I Multi-layer shallow-water models;
I Exhaustive linear stability analysis by the collocation

method;
I High-resolution numerical simulations of nonlinear

evolution with new-generation finite-volume code.
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Workflow

I Choose a model: 1.5 or 2 -layer (or more!);
I Choose bathymetry;
I Choose balanced profiles of velocity/interface;
I Analyse linear stability: unstable modes, growth

rates;
I Initialise nonlinear simulations with the unstable

modes, study saturation;
I Look how instabilities manifest themselves in

initial-value problem.
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RSW equations with coast (no bathymetry)

Equations of motion:

ut + uux + vuy − fv + ghx = 0,
vt + uvx + vvy + fu + ghy = 0,

ht + (hu)x + (hv)y = 0. (1)

Boundary conditions:

H(y) + h(x , y , t) = 0, DtY0 = v at y = Y0 , (2)

where Y0(x , t) is the position of the free streamline, Dt is
Lagrangian derivative.
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Balanced flows:
u = U(y), v = 0, and h = H(y),

U(y) = −g
f

Hy (y) (3)

exact stationary solution.
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Figure: Examples of the basic state heights (left) and velocities
(right) for constant PV flows with U0 = −sinh(−1)/cosh(−1)
(thick line), U0 = 1/2 (dotted) and a zero PV flow (dash-dotted)
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Non-dimensional linearized system:

ut + Uux + vUy − v = − hx ,
vt + Uvx + u = − hy ,

ht + Uhx = −(Hux + (Hv)y ).
(4)

Linearized boundary conditions:

I

Y0 = − h
Hy

∣∣∣∣
y=0

, (5)

I continuity equation evaluated at y = 0.

The only constraint is regularity of solutions at y = 0.
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PV of the mean flow

Q(y) =
1− Uy

H(y)
, (6)

Geostrophic equilibrium⇒

Hyy (y)−Q(y)H(y) + 1 = 0, with

{
H(0) = 0
Hy (0) = −U0,

(7)

U(0) = U0 is the mean-flow velocity at the front.
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Figure: Stability diagram in the (U0
fL , k) plane for the constant

PV current. Values of the growth rates in the right column.
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Dispersion diagram: stable flow
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Figure: Dispersion diagram for U0 = −sinh(−1)/cosh(−1) and
Q0 = 1.
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Dispersion diagram: unstable flow
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Figure: Dispersion diagram for U0 = 0.5 and Q0 = 1.
Crossings of the dispersion curves in the upper panel
correspond to instability zones in the lower panel.
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The most unstable mode: Kelvin-Frontal
resonance
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Figure: Height and velocity fields of the most unstable mode
k = 3.5.
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Saturation of the primary instability
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Figure: Height and velocity fields of the perturbation at t = 0
(left) and t = 30 (right). Kelvin front is clearly seen at the
bottom of the right panel.
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Kelvin wave breaking
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Figure: Evolution of the tangent velocity at y = −L (at the wall)
for t = 0,2.5,5,7.5,10,12.5,15,17.5,20,22.5 (from lower to
upper curves)
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Secondary instability
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Figure: Height and velocity fields of the secondary perturbation
at t = 335, t = 500 (right).
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Reorganization of the mean flow
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Figure: Evolution of the mean zonal height (left) and mean
zonal velocity (right): Initial state t = 0 (dashed line), primary
unstable mode saturated at t = 40 (dash-dotted line), late
stage t = 300 (thick line).
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Stability diagram of the reorganized flow

Figure: Dispersion diagram of the eigenmodes corresponding
to the basic state profile of the flow at t = 335, at the beginning
of the secondary instability stage (see Fig. 9).
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Most unstable mode of the reorganized flow
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Figure: Height and velocity fields of the most unstable mode of
figure 10 for k = k0. Only one wavelenght is plotted. Note the
similarity with the mode observed in the simulation, Fig. 8
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Instability in Cauchy problem
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Figure: y − c diagram of the height field at t = 45 of the
development of initially localised perturbation (dotted) for
linearly stable (upper) and unstable (lower) current.
Phase-locking of frontal and Kelvin waves in the lower panel
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Equations of motion

Djuj − fvj = − 1
ρj
∂xπj ,

Djvj + fuj = − 1
ρj
∂yπj ,

Djhj +∇ · (hjvj) = 0,
(8)

j = 1,2: upper/lower layer, (x , y), hj(x , y , t) - depths of
the layers, πj , ρj - pressures, densities of the layers,

∇πj = ρjg∇(sj−1h1 + h2), s = ρ1/ρ2. (9)
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Stationary solutions
Balanced flow with depths Hj(y) and velocities Uj(y):

∂yHj = (−1)j−1 f
g′

(U2 − sj−1U1), (10)

Linearization/nondimensionalization:

∂tuj + Uj∂xuj + vj∂yUj − vj = −∂x(sj−1h1 + h2),
∂tvj + Uj∂xvj + uj = −∂y (sj−1h1 + h2),

∂thj + Uj∂xhj + Hj∂xuj = −∂y (Hjvj).
(11)



Lecture 3:
Applications to the

ocean,
density-driven

coastal currents

Motivation

Approach

Passive lower layer
Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the
instability in initial-value
problem

Active lower layer
Preliminaries

Linear stability

Nonlinear saturation

Role of the vertical shear
(KH) instability

Summary and
conclusions

Literature

Boundary conditions

I Upper layer: same as in 1.5-layer case,
I Lower layer: for harmonic perturbations

(uj(x , y), vj(x , y),hj(x , y)) = (ũj(y), ṽj(y), h̃j(y)) ei(kx−ωt),
(12)

Filtering of outer inertia-gravity waves, decay
condition:

∂y (sh1 + h2) = −k(sh1 + h2) at y = 0.

Key parameters:
U0, the non-dimensional velocity of the upper layer at the
front location y = 0, equivalent to Rossby number, aspect
ratio r = H1(−1)/H2(−1), and stratification s = ρ1/ρ2.
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Configurations considered:

I Bottom layer: initially at rest (U2 = 0),
I Upper layer: with constant PV.

Two classes of flows: barotropically stable/unstable, i.e.
stable/unstable in the 1.5 - layer limit.
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Barotropically stable case

Figure: Dispersion diagrams for s = .5. (a) r = 10, (b) r = 2,
(c) r = 0.5. Horizontal scale of the bottom panel shrinked to
show short-wave KH instabilities.
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Barotropically unstable case

Figure: Dispersion diagrams for s = 0.5 and for Rd = 1. (a)
r = 10, (b) r = 5, (c) r = 2 . The horizontal scale of the panels
shrinked to show short-wave KH instabilities.



Lecture 3:
Applications to the

ocean,
density-driven

coastal currents

Motivation

Approach

Passive lower layer
Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the
instability in initial-value
problem

Active lower layer
Preliminaries

Linear stability

Nonlinear saturation

Role of the vertical shear
(KH) instability

Summary and
conclusions

Literature

maxP
2
 / maxP

1
 = 0.017044 maxP

2
 / maxP

1
 = 0.047946

maxP
2
 / maxP

1
 = 0.015975 maxP

2
 / maxP

1
 = 0.35601

Figure: Typical unstable modes(left to right, top to bottom):
KF1, RF, RP, PF.
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Scenario of development of the baroclinic RF
instability as follows from DNS

1. Upper layer: frontal wave evolves into a series of
monopolar vortices at certain spacing due to vortex
lines clipping and reconnection following formation of
Kelvin fronts

2. Lower layer: Rossby wave develops a series of
vortices of alternating signs

3. Lower-layer dipoles drive the vortex out of the shore
and are at the origin of the detachment.
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Figure: Levels of h1(x , y , t) in the upper layer (left) and isobars
of π2(x , y , t) in the lower layer (right) at t = 150 and 200 for the
development of the unstable RF mode superposed on the
basic flow with a depth ratio r = 2.
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Energetics
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Figure: Logarithm of the kinetic energy Kper of the perturbation
for the unstable mode in the upper layer (thick) and in the lower
layer (dashed).
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Kelvin front and dissipation during
development of RF instability
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Figure: Before detachment: zoom of the wall region.
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Structure of the detached vortex 1
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Figure: Isobars of π1(x , y , t) in the upper layer (white lines) and
π2(x , y , t) in the lower layer (dark lines) at t = 250. Dark (light)
background: anticyclonic (cyclonic) region.
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Structure of the detached vortex 2
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Figure: The x (left) and y (right) cross-sections of the detached
vortex at t = 300
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Evolution of the total energy
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Figure: Levels of h1(x , y , t) in the upper layer (left) and isobars
of π2(x , y , t) in the lower layer (right) at t = 20 and 60 for the
development of the unstable RF mode superposed on the
basic flow with a depth ratio r = 0.5.
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(thick line) and the dissipation rate (dashed line) for the
evolution of the instability
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I Exhaustive linear stability analysis of coastal
currents/oucropping fronts performed,

I Physical nature of all instabilities as resonances
between various eigenmodes established,

I Nonlinear evolution of leading instabilities simulated
with new high-resolution finite-volume code,

I An essential role of Kelvin fronts (breaking Kelvin
waves) in reorganization of the flow and coherent
structure formation highlighted,

I A mechanism of vortex detachment from the
unstable baroclinic coastal current is identified,

I (Non-) Influence of short-scale shear instabilities
understood.
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