Understanding large-scale atmospheric and oceanic flows with layered rotating shallow water models

V. Zeitlin,

Non-homogeneous Fluids and Flows, Prague, August 2012

Lecture 3: Applications to the ocean, density-driven coastal currents

Votivatio

Approach

assive lower layer

Preliminaries

Linear stability

Nonlinear saturation Manifestation of the nstability in initial-value

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Plan

Motivation

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Lecture 3: Applications to the ocean, density-driven coastal currents

Motivation

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

nstability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

・ロト・西ト・田・・田・ ひゃぐ

Ingredients

- Multi-layer shallow-water models;
- Exhaustive linear stability analysis by the collocation method;
- High-resolution numerical simulations of nonlinear evolution with new-generation finite-volume code.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatior

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Workflow

- Choose a model: 1.5 or 2 -layer (or more!);
- Choose bathymetry;
- Choose balanced profiles of velocity/interface;
- Analyse linear stability: unstable modes, growth rates;
- Initialise nonlinear simulations with the unstable modes, study saturation;
- Look how instabilities manifest themselves in initial-value problem.

Notivatior

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Vlanifestation of the nstability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Typical configuration

Lecture 3: Applications to the ocean, density-driven coastal currents

Motivatio

Approach

Passive lower layer

Preliminaries

Linear stabilit

Nonlinear saturation Manifestation of the nstability in initial-value

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

RSW equations with coast (no bathymetry)

Equations of motion:

$$\begin{array}{rcl} u_t + uu_x + vu_y - fv + gh_x &=& 0, \\ v_t + uv_x + vv_y + fu + gh_y &=& 0, \\ h_t + (hu)_x + (hv)_y &=& 0. \end{array}$$

$$H(y) + h(x, y, t) = 0$$
, $D_t Y_0 = v$ at $y = Y_0$, (2)

where $Y_0(x, t)$ is the position of the free streamline, D_t is Lagrangian derivative.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatior

Approach

Passive lower layer

Preliminaries

Linear stabili

(1)

Nonlinear saturation Manifestation of the

Active lower laver

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Balanced flows: u = U(y), v = 0, and h = H(y), $U(y) = -\frac{g}{f}H_y(y)$

exact stationary solution.

Figure: Examples of the basic state heights (left) and velocities (right) for constant PV flows with $U_0 = -sinh(-1)/cosh(-1)$ (thick line), $U_0 = 1/2$ (dotted) and a zero PV flow (dash-dotted)

Lecture 3: Applications to the ocean, density-driven coastal currents

(3)

Notivatio

Approach

Passive lower layer

Preliminaries

Linear stabilit

Nonlinear saturation Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

・ロト・西ト・ヨト ・ヨー シタの

Non-dimensional linearized system:

$$u_t + Uu_x + vU_y - v = -h_x,$$

$$v_t + Uv_x + u = -h_y,$$

$$h_t + Uh_x = -(Hu_x + (Hv)_y).$$

Linearized boundary conditions:

$$Y_0 = -\frac{h}{H_y}\Big|_{y=0},$$

• continuity equation evaluated at y = 0.

The only constraint is regularity of solutions at y = 0.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatior

Approach

(4)

(5)

assive lower layer

Preliminaries

Linear stability

Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

PV of the mean flow

$$Q(y)=\frac{1-U_y}{H(y)},$$

Geostrophic equilibrium \Rightarrow

$$H_{yy}(y) - Q(y)H(y) + 1 = 0, \ \text{with} egin{cases} H(0) = 0 \ H_y(0) = -U_0, \end{cases}$$

 $U(0) = U_0$ is the mean-flow velocity at the front.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

assive lower layer

reliminaries

(6)

(7)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Linear stability

Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Figure: Stability diagram in the $(\frac{U_0}{fL}, k)$ plane for the constant PV current. Values of the growth rates in the right column.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivation

Approach

assive lower laye

Preliminaries

Linear stability

Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Dispersion diagram: stable flow

Figure: Dispersion diagram for $U_0 = -sinh(-1)/cosh(-1)$ and $Q_0 = 1$.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dispersion diagram: unstable flow

Figure: Dispersion diagram for $U_0 = 0.5$ and $Q_0 = 1$. Crossings of the dispersion curves in the upper panel correspond to instability zones in the lower panel. Lecture 3: Applications to the ocean, density-driven coastal currents

Notivation

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

The most unstable mode: Kelvin-Frontal resonance

Figure: Height and velocity fields of the most unstable mode k = 3.5.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivation

Approach

Passive lower laye

Preliminaries

Linear stability

Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Saturation of the primary instability

Lecture 3: Applications to the ocean, density-driven coastal currents

Votivatio

Approach

Passive lower layer

Preliminaries Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Figure: Height and velocity fields of the perturbation at t = 0 (left) and t = 30 (right). Kelvin front is clearly seen at the bottom of the right panel.

Kelvin wave breaking

Figure: Evolution of the tangent velocity at y = -L (at the wall) for t = 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5 (from lower to upper curves)

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries Linear stability

Nonlinear saturation

Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Secondary instability

Lecture 3: Applications to the ocean, density-driven coastal currents

Motivatio

Approach

Passive lower layer

Preliminaries Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Figure: Height and velocity fields of the secondary perturbation at t = 335, t = 500 (right).

Reorganization of the mean flow

Figure: Evolution of the mean zonal height (left) and mean zonal velocity (right): Initial state t = 0 (dashed line), primary unstable mode saturated at t = 40 (dash-dotted line), late stage t = 300 (thick line).

Lecture 3: Applications to the ocean, density-driven coastal currents

Votivation

Approach

Passive lower layer

Preliminaries Linear stability

Nonlinear saturation

Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Stability diagram of the reorganized flow

Figure: Dispersion diagram of the eigenmodes corresponding to the basic state profile of the flow at t = 335, at the beginning of the secondary instability stage (see Fig. 9).

Lecture 3: Applications to the ocean, density-driven coastal currents

Votivatior

Approach

Passive lower layer

Preliminaries Linear stability

Nonlinear saturation

Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Most unstable mode of the reorganized flow

Lecture 3: Applications to the ocean, density-driven coastal currents

Votivatio

Approach

Passive lower layer

Preliminaries Linear stability

Nonlinear saturation

Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Figure: Height and velocity fields of the most unstable mode of figure 10 for $k = k_0$. Only one wavelenght is plotted. Note the similarity with the mode observed in the simulation, Fig. 8

Instability in Cauchy problem

Figure: y - c diagram of the height field at t = 45 of the development of initially localised perturbation (dotted) for linearly stable (upper) and unstable (lower) current. Phase-locking of frontal and Kelvin waves in the lower panel

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatior

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Equations of motion

$$\begin{array}{rcl} D_j u_j - f v_j &=& -\frac{1}{\rho_j} \partial_x \pi_j, \\ D_j v_j + f u_j &=& -\frac{1}{\rho_j} \partial_y \pi_j, \\ D_j h_j + \nabla \cdot (h_j \mathbf{v_j}) &=& \mathbf{0}, \end{array}$$

j = 1,2: upper/lower layer, (*x*, *y*), $h_j(x, y, t)$ - depths of the layers, π_j , ρ_j - pressures, densities of the layers,

$$abla \pi_j =
ho_j g \nabla (s^{j-1} h_1 + h_2), \ s =
ho_1 /
ho_2.$$

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminarie

Linear stability

(8)

(9)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries

Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Stationary solutions

Balanced flow with depths $H_i(y)$ and velocities $U_i(y)$:

$$\partial_y H_j = (-1)^{j-1} \frac{f}{g'} (U_2 - s^{j-1} U_1),$$
 (10)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Linearization/nondimensionalization:

$$\partial_{t}u_{j} + U_{j}\partial_{x}u_{j} + v_{j}\partial_{y}U_{j} - v_{j} = -\partial_{x}(s^{j-1}h_{1} + h_{2}),$$

$$\partial_{t}v_{j} + U_{j}\partial_{x}v_{j} + u_{j} = -\partial_{y}(s^{j-1}h_{1} + h_{2}),$$

$$\partial_{t}h_{j} + U_{j}\partial_{x}h_{j} + H_{j}\partial_{x}u_{j} = -\partial_{y}(H_{j}v_{j}).$$
(11)

Lecture 3: Applications to the ocean, density-driven coastal currents

/lotivatio

Approach

assive lower layer

reliminaries

Linear stabili

Nonlinear saturation Manifestation of the ostability in initial-value

Activo Iowor Iovor

Preliminaries

Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

_iterature

Boundary conditions

- Upper layer: same as in 1.5-layer case,
- Lower layer: for harmonic perturbations

$$u_j(x,y), v_j(x,y), h_j(x,y)) = (ilde{u}_j(y), ilde{v}_j(y), ilde{h}_j(y)) \; e^{i(kx-\omega t)}$$

Filtering of outer inertia-gravity waves, decay condition:

$$\partial_y(sh_1 + h_2) = -k(sh_1 + h_2)$$
 at $y = 0$.

Key parameters:

 U_0 , the non-dimensional velocity of the upper layer at the front location y = 0, equivalent to Rossby number, aspect ratio $r = H_1(-1)/H_2(-1)$, and stratification $s = \rho_1/\rho_2$.

◆□ ▶ ◆ @ ▶ ▲ Ξ ▶ ▲ Ξ ▶ ■ → の Q Q

(12)

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries

Linear stabilit

Ionlinear saturation Manifestation of the Instability in initial-value Aroblem

Active lower layer

Preliminaries

Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Configurations considered:

- Bottom layer: initially at rest $(U_2 = 0)$,
- Upper layer: with constant PV.

Two classes of flows: barotropically stable/unstable, i.e. stable/unstable in the 1.5 - layer limit.

Notivation

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries

Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

・ロト・日本・日本・日本・日本・日本

Barotropically stable case

Figure: Dispersion diagrams for s = .5. (a) r = 10, (b) r = 2, (c) r = 0.5. Horizontal scale of the bottom panel shrinked to show short-wave KH instabilities.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatior

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower laye

Preliminaries

Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Barotropically unstable case

Figure: Dispersion diagrams for s = 0.5 and for $R_d = 1$. (*a*) r = 10, (*b*) r = 5, (*c*) r = 2. The horizontal scale of the panels shrinked to show short-wave KH instabilities.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivation

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower laye

Preliminaries

Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Figure: Typical unstable modes(left to right, top to bottom): KF1, RF, RP, PF.

Lecture 3: Applications to the ocean, density-driven coastal currents

Motivatior

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower laye

Preliminaries

Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

・ロト・日本・日本・日本・日本・日本

Scenario of development of the baroclinic RF instability as follows from DNS

- Upper layer: frontal wave evolves into a series of monopolar vortices at certain spacing due to vortex lines clipping and reconnection following formation of Kelvin fronts
- Lower layer: Rossby wave develops a series of vortices of alternating signs
- Lower-layer dipoles drive the vortex out of the shore and are at the origin of the detachment.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries Linear stability

Ionlinear saturation fanifestation of the Istability in initial-value roblem

Active lower layer

Preliminaries Linear stability

Nonlinear saturation

Role of the vertical shear (KH) instability

Summary and conclusions

Literature

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Figure: Levels of $h_1(x, y, t)$ in the upper layer (left) and isobars of $\pi_2(x, y, t)$ in the lower layer (right) at t = 150 and 200 for the development of the unstable RF mode superposed on the basic flow with a depth ratio r = 2.

Notivation

Approach

Passive lower layer

- Preliminaries
- Linear stability
- Nonlinear saturation
- Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries Linear stability

Nonlinear saturation

Role of the vertical shear (KH) instability

Summary and conclusions

Energetics

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivation

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the instability in initial-value

Active lower layer

Preliminaries Linear stability

Nonlinear saturation

Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Figure: Logarithm of the kinetic energy K_{per} of the perturbation for the unstable mode in the upper layer (thick) and in the lower layer (dashed).

Kelvin front and dissipation during development of RF instability

Lecture 3: Applications to the ocean, density-driven coastal currents

Motivatio

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability

Nonlinear saturation

Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Figure: Before detachment: zoom of the wall region.

Structure of the detached vortex 1

Lecture 3: Applications to the ocean, density-driven coastal currents

Motivatio

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the instability in initial-value arobiem

Active lower layer

Preliminaries Linear stability

Nonlinear saturation

Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Figure: Isobars of $\pi_1(x, y, t)$ in the upper layer (white lines) and $\pi_2(x, y, t)$ in the lower layer (dark lines) at t = 250. Dark (light) background: anticyclonic (cyclonic) region.

Structure of the detached vortex 2

Figure: The x (left) and y (right) cross-sections of the detached vortex at t = 300

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries Linear stability

Nonlinear saturation

Role of the vertical shear (KH) instability

Summary and conclusions

_iterature

Evolution of the total energy

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries

Nonlinear saturation

Role of the vertical shea (KH) instability

Summary and conclusions

Literature

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Figure: Levels of $h_1(x, y, t)$ in the upper layer (left) and isobars of $\pi_2(x, y, t)$ in the lower layer (right) at t = 20 and 60 for the development of the unstable RF mode superposed on the basic flow with a depth ratio r = 0.5.

Lecture 3:

ocean.

Energetics

Figure: Left -logarithm of the kinetic energy of the perturbation for mode $k = k_0$ in the upper layer (solid) and in the lower layer (dashed), and for the sum of modes with $k > 10 k_0$ (dashed-dotted). Right - time-dependence of the total energy (thick line) and the dissipation rate (dashed line) for the evolution of the instability Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatio

Approach

Passive lower layer

Preliminaries

Linear stability

Nonlinear saturation

nanifestation of the hstability in initial-value roblem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

_iterature

Loss of hyperbolicity

Lecture 3: Applications to the ocean, density-driven coastal currents

Votivatior

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the nstability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

Literature

Figure: Contours of $\pi_1(x, y, t)$ (upper panel) and $\pi_2(x, y, t)$ (lower panel) with mean zonal flow filtered out at t = 20, with a depth ratio r = 0.5. The white lines indicate the boundaries of non-hyperbolic domains.

- Exhaustive linear stability analysis of coastal currents/oucropping fronts performed,
- Physical nature of all instabilities as resonances between various eigenmodes established,
- Nonlinear evolution of leading instabilities simulated with new high-resolution finite-volume code,
- An essential role of Kelvin fronts (breaking Kelvin waves) in reorganization of the flow and coherent structure formation highlighted,
- A mechanism of vortex detachment from the unstable baroclinic coastal current is identified,
- (Non-) Influence of short-scale shear instabilities understood.

Lecture 3: Applications to the ocean, density-driven coastal currents

Notivatior

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the

Active lower laver

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions

References

Presentation is based on

- J. Gula and V. Zeitlin, "Instabilities of buoyancy-driven coastal currents and their nonlinear evolution in the two-layer rotating shallow water model. Part 1. Passive lower layer", *J. Fluid Mech.*, 659, 69 - 93 (2010).
- J. Gula, V. Zeitlin and F. Bouchut, "Instabilities of buoyancy-driven coastal currents and their nonlinear evolution in the two-layer rotating shallow water model. Part 2. Active lower layer" *J. Fluid Mech.*, 665, 209 - 237 (2010).

Lecture 3: Applications to the ocean, density-driven coastal currents

Votivatio

Approach

Passive lower layer

Preliminaries Linear stability Nonlinear saturation Manifestation of the instability in initial-value problem

Active lower layer

Preliminaries Linear stability Nonlinear saturation Role of the vertical shear (KH) instability

Summary and conclusions