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Reminder R ol e

numericalschemes

for RSW.
Test/example:
geostrophic
adjustment
RSW system :
» Equivalent to 2d barotropic gas dynamics (if no Wellelanced
. Inite-volume
topography and rotation). numerical
. . . schemes for
» Hyperbolic (except at resonant points (crossing of ol

eigenvalues of the characteristic matrix).
» Rotation - stiff source.

» Weak solutions « Rankine-Hugoniot conditions.
Selection : energy decrease across shocks
(equivalent to entropy increase in gas dynamics).

» Natural numerical method : finite-volume,
shock-capturing



1-dimensional SW with topography :
Equations in conservative form, where Z(x)/g -
topography :

{ ht + (hu)x - O,
(hu); + (hu? + gh?/2)x + hZy = 0,

Convex entropy (energy) :
e = hu?/2 + gh?/2 + ghZ

with entropy flux (e + gh?/2) u.
Numerical difficulties :
» keeping h > 0,

» maintaining steady states at rest ("well-balanced"

property u = 0, gh+ Z = const
» treatment of drying h — 0,
» satisfying a discrete entropy inequality.
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First-order three-point finite-volume schemes = ciieoume

numericalschemes

for RSW.

. . . Test/example:
DISCI’etlza’[Ion . geqstrophic

. . e adjustment
Grid Xiy1 /2, I € Z, cells (finite volumes)
Ci = (Xi—1/2, Xiy1/2), centers X; = (Xj_1/2 + Xj+1/2)/2,
Iengths AX; = Xit1/2 — Xji—1/2-
Discrete data (U, Z;), U" — approximation of U = (h, hu).
Evolution : Sl

At
urtt — U+ E(E’H/L — Fi—1/24) =0, (2)

Z; does not evolve,
Fiv1j2— = Fi(Ui, Uit1, AZi 11 2), Figajoq = Fr(Ui, Uiyt AZi 1),

. 3)
with AZ; 42 = Zjy1 — 4.
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Numerical fluxes F; and F, must satisfy two consistency
properties.

» consistency with the conservative term :

Conceptual example :

f/(U7 U70) - fr(U, U7 0) = F(U) = (hu7 /')[']2—+-gl’]2/2)7 z:‘::;:;‘ayterwnh
4)

» consistency with the source :

Fr(Up, Up, AZ)—Fi(U), Uy, AZ) = (0, —hAZ)+0(AZ),

(5)
as U, U, — Uand AZ — 0.



Well-balancing and mass conservation

A required global property is the conservation of mass,
FlU, U, AZ) = FN(U, Up, AZ) = FA(U, U, AZ). (6)
The property for the scheme to be well-balanced is that

Fi+1/2* = F(U,) and F,'+1/2+ = F(UI-H)
whenever u; = uj 1 = 0 and ghiy1 — ghj + AZ; 1,2 = 0.
(7)
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Hydrostatic reconstruction scheme ( Audusse = rteoun

Finite-volume

et a/, 2003) numericalschemes

for RSW.
Test/example:
geostrophic
adjustment

g R2 g Rn2
éhl - fhl*

* * 0
F,(U,,U,,AZ):f(U,,U,)+<ghg_ghz :
2°°r 2" rx

AU 02) = U U) + (g Cape ).
©®)

Hydrostatic reconstruction

where U} = (hy, hi.up), Uf = (b, hrur), and
h, = max(0, h — max(0,AZ/qg)),
hr. = max(0, h — max(0,—AZ/g)).
F is any entropy satisfying consistent numerical flux for

the problem with Z = cst. Multiple choices for F in the

literature - approximate Riemann solvers (Roe, HLL,
HLLC,...).



Rotation as an apparent topography

1.5d shallow water with topography and Coriolis force

ht + (hu)x = 0,
(hu)¢ 4 (hu? + gh?/2)x + hZ, — fhv = 0, (9)
(hv): + (huv)x + fhu = 0,

where Z = Z(x), f = f(x). Solutions at rest are given by
u=0, fv = (gh+ 2)x. The trick is to identify the two first
equations in (9) as (1) with a new topography Z + B,
where By = —fv. As v depends on time while B should be
time-independent, so take B = —fv" and solve (1) on the
time interval (t,, t,,1) with topography Z + B".
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Discretized 1.5d RSW BRI

numericalschemes

for RSW.
Test/example:
geostrophic
At adjustment
n+1 n h .
A —hi (F/+1/2 Fili/2) =0,
n+1,,n+1 n,n hu .
A = hiu + 5 (F/+1/2— Fiio+) =0, (10)
n+1, n+1 n,n A hv .
b v = iy T Ax (F:+1/2— FiZi/24) =0,
W | t h E)Z‘:;iro;a:; apparent

(F,lji_1/27 F,’L/g,) = F}U(hi, Ui, hist, Uigr, DZjyq o + Abl 4 )2),
(Flitjos FTY j21) = F79(hi Uiy bt Uit DZigq s + ABRL ),
11
v, (11)
Abl ) = *77+1/2TAX/+1/2/Q (12)

and 7'9 and 79 - numerical hydrostatic reconstruction
fluxes of the 1d shallow water.



Transverse momentum fluxes

A natural discretization associated to the equivalent
conservation law (geostrophic momentum)

(h(v +Q)): + (hu(v + Q))x = 0, with Qx = f, which is
strongly related to the potential vorticity :

ghv F/+1/2Vl it Fli1/2 >0,
/2= F,+1/2(V/+1 + AQj1q2) f F+1/2 <0,
(13)
511/2(Vi AQ/+1/2) if F+1/2 >0, (14)

Fhv h
i+1/24+ = F,'+1/2Vi+1 if F+1/2 <0,

with
AQj 12 = fiy1/28X11)2. (15)
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Second-order reconstruction - general Finte-volume

numericalschemes

Reconstruction operator : (U;, Zj) — Uiy1/2—, Ziy1/2—, for RSW.
. . o le Test/example:
U,'+1/2+, Zi+1/2+ forieZz,ina way that it is geostrophic

adjustment

» conservative in U :

Ui+ + Up1)2-
2

= Ui7 (16)

» second-order, i.e. that whenever for all J,

1 1
- AX,’ /C,' U(X) dX’ Z’ - AX,’ /;,' Z(X) dX’ Going second order
(17)

Ui

for smooth U(x), Z(x), then, for § = sup,;Ax;

Uir1j2- = UXip12) + O(6%),  Upprj24 = U(Xip1)2) + O(8°),
Zii1jo- = Z(Xis12) + O(6%),  Zip1jor = Z(Xis1/2) + O(6%).
(18)
Possible reconstructions : minmod (respects max
principle), ENO (non-oscillatory), ...
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At
Uin+1 — U,-n + F(FIH/Z— —Fi—1/2+ — Fi) =0, (19)
Xi
with
Fit1/o- = Fi U;ZH/Z—’ Ui'zi-1/2+vzi7|-1/2—’zi,—7k1/2+ ’
,:i+1/2+ — fr U;'—1’_1/2_, U,'Z_«]/z_;'_, 2;2_1/2_, Z,’Z_-]/Q_i_ , Going second order
Fi=Fe <Uin—1/2+v U/11/2—’Zin—1/2+’zil1/2— J
(20)

where the arguments are obtained from the
reconstruction operator applied to (U, Z"), and the
centered flux function F, to be chosen.



2nd-order reconstruction for shallow water R ol e

(Ui, zi) = (hi, hiuj, z;) nuli%i%}:ﬁ:es
Ui+1/2:|: = (h,’+1/2:|:, hi+1/2:t U,’_H/z:t) 'reconstructed gz(l)strophic.
values. Then sdusiment
hi—1jo4 + Nig1jo— h
—
hi—1 /24 Ui—1 /24 + Pig1 /2-Ujq 72— h (21)
5 = Nju;.
Equivalent to
AX; AX;
h,71/2+ = hl - TIDh/, h/+1/2, — h/ + TIDhM Going second order
Piy1/2— AX
Ui—t/24+ = Uj — ’+h'/ TIDU”
1
hi_1 2+ AX;
Uitq/2— = Ui + ’ hi/ - T'Dui,
(22)

for some slopes Dhj, Du;. Minmod, ENO, ENO,, for them.
ENOy, for h + z variable.

Centered flux : Fo(U), Uy, Az) = (0, —@gAz).



Second-order accuracy in time

The second-order accuracy in time can be obtained by
the Heun method. The second-order scheme in x can be

written as
U™ = U" 4+ Ato(U), (23)

where U = (U))jcz, and ¢ is a nonlinear operator
depending on the mesh. Then the second-order scheme
in time is B

U™ = U+ Ato(U),

yn+2 — gn+ —tAtd)(D”H), (24)
un + Un+2
—a
If the operator ® does not depend on At, this procedure
gives a fully second-order scheme in space and time. The
convex average in (24) enables to ensure the stability
without any further limitation on the CFL.

Un+1 —
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From 1- to 2-dimensions : S a .

numericalschemes

Our interest - systems of the form : JorAsuL
est/example:
geostrophic

0tU+0x(F1(U, 2))+0y(F2(U, 2))+B1(U, Z)0xZ+Bo(U, 2)9y Z =it

(25)

2d quasilinear system :
otU + A1UoxU + A, U0, U = 0. (26)

Consider planar solutions of the form U(t, x, y) = U(t,()

with ¢ = xn' + yn? and (n', n?) is a unit vector, which

leads to Going two-dimensional |
orU + An(U)o:U =0, (27)

with
AU = n'A(U) + iPAx(U). (28)

The notions introduced for one-dimensional systems can
be applied to (27), and one defines hyperbolicity,
entropies, and other notions for (26) by defining them for
all directions n.



2-dimensional mesh : R ol e

numericalschemes

for RSW.
Test/example:
geostrophic
adjustment
Rectangles
Cij = (Xi—1/2, Xit1/2) X (Yj—1/2: Yjr1/2)s I€Z,je,
(29)
with sides :
AXj = Xjp1/2 — Xi—172 > 0, Ayj = Yjy172 — Yj-172 > 0.
(30) Going two-dimensional |

The centers of the cells : x;; = (x;, y;), with

Xi—1/2 + Xit1/2 yi = Yi—172 + Yjt1/2

i = 2 ) ] 2 (31)



Finite-volumes in 2 dimensions S a .

numericalschemes

Goal : to approximate solution U(t, x, y) to (25) by s
discrete values Uj that are approximations of the mean e
value of U over the cell C; at time t, = nAt,
Un ~ /X:+1/2 y/+1/2 )d d (32)
i U(th, x, y) dxdy.
g AX’Ay/ Xi—1/2 Y VYj-1/2
A finite volume method for solving (25) takes the form
At At
Ut -uj+ Ax; ~— (Fig1/2—j—Fi- 1/2+/)+A7y/_(Fi,j+1/2—_ i.j—1 /24 JoroBhgraons
(33)
Exchange terms :
]
/:,'+1/2$7j = f/ r(Uij; U/+1,j7ZI'j'7 Zi+17j)7 (34)

Fiji1j25 = Fii(Uj, Uijr, Zij, Zijia),

for some numerical fluxes 7}, !, F2, F2.



Jet profile

A strongly unbalanced jet (no initial pressure
perturbation), Ro ~ 1

Normalized profile N (x)

~2LRd “URd [ URd 2URd
xIRd

Crucial parameters : Rossby and Burger numbers :

4 _gH

(35)
Adjusts by emitting inertia-gravity waves forming shocks.
The PV - bearing part of the flow should reache an
equilibrium state.
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Lecture 2:

Snapshots of the jet adjustment T
numericalschemes
for RSW.
Test/example:
geostrophic
height h; Ro=1 and Bu=0.25 adjustment
T,=00 " " "
IIT, 0.2
IIT, 04

-10 -5 ° s o Adjustment of an
X/Rd unbalanced jet

Two shocks are formed at t = 0.3 and propagate to the
left and to the right from the jet,respectively. One of the
shocks is formed immediately within the jet core.



Statistics of the shock formation BRI

numericalschemes

for RSW.
Test/example:
geostrophic
3 + + ° o . o o . adjustment
2 + o+ o o e o .
15 s o P . . .
Bu
0.25] o o . . . . . .‘
01 o o e P . B
Ro
. . T . . . . . . i
Breaking in t < % : shaded circles ; breaking in Adsmerof n

T <t < 2% : gpen circles ; breaking in t > 2% : crosses.
Appearance of transonic shocks with propagation velocity
changing sign in course of evolution : superscript t.
Drying was observed for large Ro and small Bu : squares.



Energy conservation/dissipation

Shock-induced energy decay in jet adjustment. Evolution
of the nondimensional energy anomaly

A = (e — ep(0))/ep(0) with ep(t) = § [ dxg(h — H)?>d and
e = ep+ 1 [ dx h(u? + v?) computed in the volume
[-5L,5L]
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Lecture 2:
Check of balance i gl
numericalschemes
for RSW.
Test/example:
geostrophic
adjustment

=20 uT=22 uT=2s

— —

Mean state in geostrophic balance (middle panel) is T
rapidly achieved, small oscillations persist in the jet core,

with amplitude decreasing with time and depending on

Ro and Bu. The period of oscillations is close to Ty =

inertial oscillations.



Check of the breaking theory

Riemann invariants in Eulerian variables :

H 1/4
Fl’i:8<h> 3XU:|:

h 3/4
Z(H) Oxh

- dominated by the 2nd term. Part of the perturbation

going towards small h breaks first.

height h

velocity u

I

o
x/Rd

Wave-breaking in a balanced jet with Ro = Bu = 1.

height h

——

- -2 1 ) 1 2 3

velocity u

\Y
Vo

s

- -2 - 2 3

1 o 1
x/Rd

Perturbation in u with Rop, = 0.8.
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Classical example : adjustment of a bump in
h (near a border) ; height field

Inertia-gravity wave emission + Kelvin wave.
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Adjustment of a bump in h near border; u -
field

t=1.650 t=12.000

Adjustment of an
unbalanced jet

Simulations vs theory

Numerical tests in
2 dimensions

Geostrophic adjustment of
a monopolar perturbation

(A)geostrophic adjustment
of dipolar perturbations

Numerical scheme
for 2-layer RSW

Literature



field

t=1.650

Adjustment of a bump in h near border; v - Fintevolume
et
Test/example:
geostrophic
adjustment

t=12.000

V%ﬁ%&

Geostrophic adjustment of
amonopolar perturbation




Adjustment of a bump in h near border ;
check of balance

t=1.650

t=12.000
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ed jet

theory

Geostrophic adjustment of
amonopolar perturbation

(A)ge
of dipol




From balanced to unbalanced dipole

4 / \ 4
s N\ s :
\3 —— Ky
W@ / 77 =3\
I//’\\\ B
~2 e B B B N i =
RN - — o o e DR Y g PR
eSS DL NS
\\\._’,I s-—.__;’
1 \ ’ 1 7
~ < - o ERLE / -
e S\ A
SN/
00 1 2 3 4 OO 1 2 3
X X

Initial balanced (/eft) and late (t = 100/f) (right)
configurations.
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Ageostrophic adjustment seen in PV field Fintevolume

numericalschemes

for RSW.
Test/example:
geostrophic
adjustment
18] 18] 18]
16| 16| 16|
14/ 14/ 14
12| 12| 12
> 10| = > 10| q > 10| ﬁ\
8| 8| 8|
6| 6|
4 4 4
2] 2] 2]
2 4 6 8 1>(0 12 14 16 18 2 2 4 6 8 1><0 12 14 16 18 20 2 4 6 8 1><0 12 14 16 18 20

Adjustment of a balanced dipole at Ro = 0.2 : PV at
t =0,10,100, from left to right. Black : cyclone, gray :
anticyclone. PV anomaly taking values in the interval
[-2.7;5.1]

(A)geostrophic adjustment
of dipolar perturbations



Adjustment as seen in the divergence field. Fintevolume
AW,

Test/example:

geostrophic

adjustment

16 16 0 16

14 14 ° 14

12 12 12

>10 >10 >10 6 e

E 8 E

5 5 2

4 4 0 4

2| 2 2 @

i 4 6 6 1012 14 16 15 2 i 6 6 d01214d6 1620 i 6 6 d012 14161620

t =5,45,100, from left to right. Contours of PV anomaly
|Q| = 0.05 superimposed. Black : divergence, gray :
convergence. Divergence taking values in the interval
[-0.2;0.3]

(A)geostrophic adjustment
of dipolar perturbations



Collisions of ageostrophic dipoles Fintevolume
e e

Test/example:

geostrophic

adjustment

6 o e
4 4 4
5
2 2 2
0 0 0
R — 0 2 R E— 0 2 R E— 0 2
X X X

Evolution of PV during the collision : t = 25,40, 50, from
left to right.

ot
(A)ge
of dipolar perturbations



Energy evolution during collision Fintevolume
"R

Test/example:

geostrophic

adjustment

.5r

D e S S S S|

5F

3t

.5

oL

iction

.5

1r 1g S€
5 ing tw
GO 20 40 60 80 100 i1z

time

Total (black), kinetic (blue) and potential (red) energy ;
during the collision. guctioafusmant

of dipolar perturbations



Multi-layer 1-dimensional shallow-water Finte-volume

numericalschemes

system with topography in conservative form = fefsw. |

geostrophic
adjustment

81/7]' + Ox (hjUj) =0, (36)

Or (hyuy)+0x (hyuf + gh? /2) +ghy (z +3 e+ > p’fhk) =
k>j k<j ™
(37)
where h; > 0, j = 1,3,...m - layer depths, u; - layer
velocities, z(x) - topography, and

layer densities. Convex entropy = energy.

Numerical scheme
for 2-layer RSW



Equivalent 1-layer systems Fintevolume
R

Test/example:

geostrophic

Shallow-water systems for U/ = (h;, hju;) with effective aclustment
topography :

Z/—Z+th+zpkhk

k>j k</

Finite volume scheme with numerical fluxes F;, :

Ui U’+— (f,(uf UL y2l 2l ) - FUL, UL 2y 2h) =0,
(38)

For each j - effective shallow water = well-balancing,

hydrostatic reconstruction, apparent topography etc will

be applied.

Numerical scheme
for 2-layer RSW



Splitting vs sum methods, an example Finte-volume

Consider an ODE "“:efg/fﬂ%%@imes
est/example:
geostrophic

C;ltj + A( U) + B(U) — O (39) adjustment

Solving dU/dt + A(U) = 0, and dU/dt + B(U) = 0, resp. :

U™t — U+ AtA(U™) = 0,
U™t — U+ AtB(U") = 0.

Splitting method :

U™z U+ ALAUT) =
Un+1 o Un+1/2 + At B(un+1/2)

o o

- solving (38) successively.
Sum method

U™ — U + At (A(U™) + B(U™) =0,
Numerical scheme

. . for 2-I RSW
- solving (38) simultaneously e



References, finite-volume wall-balanced
numerical schemes

1-layer

F. Bouchut "Efficient numerical finite-volume schemes for
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