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Midlatitude atmospheric jet

Midlatidude upper-tropospheric jet (left) and related
synoptic systems (right).
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Oceanic currents : Gulfstream

Gulfstream (left) and related vortices (right). Velocity
follows isopleths of the height anomaly in the first
approximation.
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Coastal current and associated vortices

Velocity (arrows) and temperature anomaly (colors) of the
Leeuwin curent near Australian coast.
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Destabilizing coastal flow

Instability of a coastal current in the Weddell sea.
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Mean oceanic stratification
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Primitive equations : ocean

Hydrostatics
gρ+ ∂zP = 0, (1)

P = P0 + Ps(z) + π(x , y , z; t),
ρ = ρ0 + ρs(z) + σ(x , y , z; t), ρ0 � ρs � σ

Incompressibility

~∇ · ~v = 0, ~v = ~vh + ẑw . (2)

Euler :
∂~vh

∂t
+ ~v · ~∇~vh + f ẑ ∧ ~vh = −~∇hφ. (3)

φ = π
ρ0

- geopotential.
Continuity :

∂tρ+ ~v · ~∇ρ = 0. (4)
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Mean atmospheric stratification
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Primitive equations : atmosphere,
pseudo-height vertical coordinate

∂~vh

∂t
+ ~v · ~∇~vh + f ẑ ∧ ~vh = −~∇hφ, (5)

−g
θ

θ0
+
∂φ

∂z
= 0, (6)

∂θ

∂t
+ ~v · ~∇θ = 0; ~∇ · ~v = 0. (7)

Identical to oceanic ones with σ → −θ, potential
temperature.
Vertical coordinate : pseudo-height, P - pressure.

z̄ = z0

(
1−

(
P
Ps

) R
cp

)
(8)
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Material surfaces

g f/2
z

x

z2

z1w1= dz1/dt

w2= dz2/dt
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Vertical averaging and RSW models
I Take horizontal momentum equation in conservative

form :

(ρu)t + (ρu2)x + (ρvu)y + (ρwu)z − fρv = −px , (9)

and integrate between a pair of material surfaces
z1,2 :

w |zi
=

dzi

dt
= ∂tzi + u∂xzi + v∂yzi , i = 1,2. (10)

I Use Leibnitz formula and get :

∂t

∫ z2

z1

dzρu + ∂x

∫ z2

z1

dzρu2 + ∂y

∫ z2

z1

dzρuv −

f
∫ z2

z1

dzρv = −∂x

∫ z2

z1

dzp − ∂xz1 p|z1
+ ∂xz2 p|z2

.

(analogously for v ).
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I Use continuity equation and get

∂t

∫ z2

z1

dzρ+ ∂x

∫ z2

z1

dzρu + ∂y

∫ z2

z1

dzρv = 0. (11)

I Introduce the mass- (entropy)- averages :

〈F 〉 =
1
µ

∫ z2

z1

dzρF , µ =

∫ z2

z1

dzρ. (12)

and obtain averaged equations :

∂t (µ〈u〉) + ∂x

(
µ〈u2〉

)
+ ∂y (µ〈uv〉)− fµ〈v〉

= −∂x

∫ z2

z1

dzp − ∂xz1 p|z1
+ ∂xz2 p|z2

, (13)

∂t (µ〈v〉) + ∂x (µ〈uv〉) + ∂y

(
µ〈v2〉

)
+ fµ〈u〉

= −∂y

∫ z2

z1

dzp − ∂yz1 p|z1
+ ∂yz2 p|z2

, (14)

∂tµ+ ∂x (µ〈u〉) + ∂y (µ〈v〉) = 0. (15)
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I Use hydrostatics and get, introducing mean constant
density ρ̄ :

p(x , y , z, t) ≈ −gρ̄(z − z1) + p|z1
. (16)

I Use the mean-field (= columnar motion)
approximation :

〈uv〉 ≈ 〈u〉〈v〉, 〈u2〉 ≈ 〈u〉〈u〉, 〈v2〉 ≈ 〈v〉〈v〉. (17)

and get master equation for the layer :

ρ̄(z2 − z1)(∂tvh + v · ∇vh + f ẑ ∧ vh) =

− ∇h

(
−gρ̄

(z2 − z1)2

2
+ (z2 − z1) p|z1

)
− ∇hz1 p|z1

+∇hz2 p|z2
. (18)

I Pile up layers, with lowermost boundary fixed by
topography, and uppermost free or fixed.
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1-layer RSW, z1 = 0, z2 = h

∂tv + v · ∇v + f ẑ ∧ v + g∇h = 0 , (19)

∂th +∇ · (vh) = 0 . (20)

⇒ 2d barotropic gas dynamics + Coriolis force.
In the presence of nontrivial topography b(x , y) :
h→ h − b in the second equation.

g f/2
z

h

v

x

y

Columnar motion.
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2-layer RSW, rigid lid : z1 = 0, z2 = h,
z3 = H = const

∂tvi + vi · ∇vi + f ẑ ∧ vi +
1
ρ̄i
∇πi = 0 , i = 1,2; (21)

∂th +∇ · (v1h) = 0 , (22)

∂t (H − h) +∇ · (v2(H − h)) = 0 , (23)

π1 = (ρ̄1 − ρ̄2)gh + π2 . (24)

g f/2

z

x

h

H

p2

p1

v2

v1 rho1

rho2
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2-layer rotating shallow water model with a
free surface : z1 = 0, z2 = h1, z3 = h1 + h2

∂tv2 + v2 · ∇v2 + f ẑ ∧ v2 = −∇(h1 + h2) (25)

∂tv1 + v1 · ∇v1 + f ẑ ∧ v1 = −∇(rh1 + h2), (26)

∂th1,2 +∇ ·
(
v1,2h1,2

)
= 0 , (27)

where r = ρ1
ρ2
≤ 1 - density ratio, and h1,2 - thicknesses of

the layers.

g f/2

z

x

h1

v2

v1 rho1

rho2
h2
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Useful notions

Balanced vs unbalanced motions
Geostrophic balance : balance between the Coriolis force
and the pressure force. In shallow-water model :

f ẑ = −g∇h (28)

Valid at small Rossby numbers : Ro = U/fL, where U, L -
characteristic velocity and horizontal scale. Balanced
motions at small Ro : vortices. Unbalanced motions :
inertia-gravity waves.

Relative, absolute and potential vorticity
Relative vorticity in layered models : ζ = ẑ · ∇ ∧ v.
Absolute vorticity : ζ + f . Potential vorticity (PV) :
q12 = ζ+f

z2−z1
for the fluid layer between z2 and z1.
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Dynamical actors in RSW : vortices & waves
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Conservation laws (no topography)

Equations in conservative form (momentum & mass)

∂t (hu) + ∂x (hu2) + ∂y (huv)− fhv + g∂x
h2

2
= 0,

∂t (hv) + ∂x (huv) + ∂y (hv2) + fhu + g∂y
h2

2
= 0,

∂th + ∂x (hu) + ∂y (hv) = 0.

Energy

E =

∫
dxdy e =

∫
dxdy

(
h

u2 + v2

2
+ g

h2

2

)
,

is locally conserved : ∂te +∇ · fe = 0.
Lagrangian conservation of potential vorticity :
(∂t + u∂x + v∂y ) q = 0.
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Lagrangian view of RSW dynamics

Mapping : (x , y) −→ (X (x , y ; t),Y (x , y ; t))
Equations of motion (dot - Lagrangian derivative) :

Ẍ − f Ẏ = −g∂X h,
Ÿ + f Ẋ = −g∂Y h.

(29)

Mass conservation : hI(x , y) = h(X ,Y )J (X ,Y ), where
hI = h(x , y ; 0), J (X ,Y ) = ∂(X ,Y )

∂(x ,y) - Jacobian of the
mapping.
Hence :

∂X h =
∂(h,Y )

∂(X ,Y )
=
∂(h,Y )

∂(x , y)
·(J (X ,Y ))−1 = J

(
hI , (J (X ,Y ))−1

)
,

(30)
ant similarly for ∂yh.
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"1.5 dimensional" RSW

Ẍ − fv + g
∂h
∂X

= 0 , (31)

˙(v + fX ) = 0 ,

with h(X , t) = hI(x) ∂x
∂X . Hence, v is not an independent

variable.
Alternatively (hI = H = const, for simplicity ; hI may be
always "straightened" by additional change of variables
x → a) :

u̇ − fv + gH
∂

∂a
1

2J2 = 0,

v̇ + fu = 0,

J̇ − ∂u
∂a

= 0.

Here J = ∂X
∂a = H

h(X ,t) , P = gH
2J2 - Lagrangian pressure.
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Reduction

Rewrite the Lagrangian equations of motion as a system
of 2 equations

∂tu + ∂aP = v ,
∂tJ − ∂au = 0 , (32)

(33)

where v is not an independent variable and is given by
∂av = Q(a)− J, Q(a) - potential vorticity :
Q(a) = 1

H

(
∂v
∂a + fJ

)
= 1

H

(
∂vI
∂a + fJI

)
. and the Lagrangian

time-derivative is denoted by ∂t . (Dimensionful
parameters will be omitted ; correct dimensions easy to
recover.)
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Quasilinear system

(
u
J

)
t

+

(
0 −J−3

−1 0

)(
u
J

)
a

=

(
v
0

)
. (34)

Eigenvalues and left eigenvectors : µ± = ±J−
3
2 and(

1 ,±J−
3
2

)
. Riemann invariants : w± = u ± 2J−

1
2 ,

∂tw± + µ±∂aw± = v . (35)

Original variables in terms of w± :

u =
1
2

(w+ + w−) , (36)

J =
16

(w+ − w−)2 > 0 , (37)

µ± = ±
(

w+ − w−
4

)3

. (38)
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In terms of the derivatives of the Riemann invariants
r± = ∂aw± we get

∂t r± + µ±∂ar± +
∂µ±
∂w+

r+r± +
∂µ±
∂w−

r−r± = ∂av = Q(a)− J ,

(39)
which may be rewritten using "double Lagrangian"
derivatives d

dt± = ∂t + µ±∂a as

dr±
dt±

+
∂µ±
∂w+

r+r± +
∂µ±
∂w−

r−r± = Q(a)− J , (40)

and breaking and shock formation correspond to in
r± → ±∞ in finite time.
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Ricatti equation

In terms of new variables R± = eλr±, with
λ = 3

128 log |w+ − w−|, equations (39) may be rewritten as

dR±
dt±

= −e−λ
∂µ±
∂w±

R2
± + eλ (Q(a)− J) , (41)

where ∂µ±
∂w± = 3

64(w+ − w−)2 > 0.
This is a generalized Ricatti equation and from its
qualitative analysis it follows that :

1. if initial relative vorticity Q − J = ∂av is sufficiently
negative, breaking takes place whatever initial
conditions are

2. if the relative vorticity is positive as well as the
derivatives of the Riemann invariants at the initial
moment, there is no breaking.
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Conservation laws of the 2-layer RSW (no
topography)

I Overall momentum (modulo Coriolis force)
I Mass layerwise
I Energy :

E =

∫
dxdy

[(ρ1

2
h1v1

2 +
ρ2

2
h2v2

2
)

+
(ρ1

2
gh2

1 +
ρ2

2
gh2

2

)
+ ρ1gh1h2

]
I Potential vorticity layerwise, Lagrangian :

q1 =
f + ∂xv1 − ∂yu1

h1
, q2 =

f + ∂xv2 − ∂yu2

h2
,



Lecture 1:
Derivation of the

model & properties

Large-scale
atmospheric and
oceanic flows

Modeling
large-scale
processes :
primitive equations
on the tangent
plane
Ocean

Atmosphere

Vertical averaging
of the primitive
equations

Rotating shallow
water model(s)

Properties of the
RSW model(s)
Properties of 1-layer RSW
model

Conservation laws

Lagrangian description

Hyperbolicity and shocks

Properties of 2-layer RSW
model

Conservation laws

Possible loss of
hyperbolicity

Literature

2-layer 1.5d RSW model with a rigid lid

Basic equations :

∂tu1 + u1∂xu1 − fv1 + ρ−1
1 ∂xπ1 =0 ,

∂tv1 + u1(f + ∂xv1) =0 ,

∂tu2 + u2∂xu2 − fv2 + ρ−1
2 ∂xπ1 + g′∂xη =0 ,

∂tv2 + u2(f + ∂xv2) =0 ,
∂t (H1 − η) + ∂x ((H1 − η)u1) =0 ,
∂t (H2 + η) + ∂x ((H2 + η)u2) =0 ,

(u1, v1), (u2, v2) velocities in upper/lower layer ;
π2 = π1 + g(ρ1h1 + ρ2h2) , η - interface displacement, H1
and H2 - heights of two layers at rest ; possible to use the
full layers’ heights h1,2 = H1,2 ∓ η as dynamical variables,
g′ is reduced gravity : g′ = g(ρ2 − ρ1)/ρ2.
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4 equations for 4 variables u2, h2, v2, v1

Eliminating barotropic pressure and imposing zero
transverse momentum :

du2

dt
− fv2 +

ρ1

ρ2h1 + ρ1h2

(
f (h1v1 + h2v2)

− ∂x

(
h1u2

1 + h2u2
2

)
+

g∆ρ

ρ1
h1∂xh2

)
= 0,

dh2

dt
+ h2∂xu2 = 0,

dv2

dt
+ fu2 = 0,

dv1

dt
+ (u1 − u2)∂xv1 + fu1 = 0,

u1 =
h2u2

h2 − H
, h1 = H − h2.

Here d
dt = ∂t + u2∂x -Lagrangian derivative.



Lecture 1:
Derivation of the

model & properties

Large-scale
atmospheric and
oceanic flows

Modeling
large-scale
processes :
primitive equations
on the tangent
plane
Ocean

Atmosphere

Vertical averaging
of the primitive
equations

Rotating shallow
water model(s)

Properties of the
RSW model(s)
Properties of 1-layer RSW
model

Conservation laws

Lagrangian description

Hyperbolicity and shocks

Properties of 2-layer RSW
model

Conservation laws

Possible loss of
hyperbolicity

Literature

Further simplifications

Use of the mass Lagrangian variable a : h2 = ∂a/∂x) :

du2

dt
− fv2 +

ρ1

ρ2h1 + ρ1h2

(
f (h1v1 + h2v2)

− h2
∂

∂a

(
h1u2

1 + h2u2
2

)
+

g∆ρ

ρ1
h1h2∂ah2

)
= 0,

dh2

dt
+ h2∂au2 = 0,

dv2

dt
+ fu2 = 0,

dv1

dt
+ (u1 − u2)h2∂av1 + fu1 = 0.
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Matrix form

d
dt


v2
v1
h2
u2

+


0 0 0 0
0 T 0 0
0 0 0 h2

2
0 0 M 2N

 ∂

∂a


v2
v1
h2
u2

 =


−fu2
−fu1

0
fh1

ρ2v2−ρ1v1
ρ2h1+ρ1h2

 ,

T = (u1 − u2)h2 =
Hu2

H − h2
h2,

M =
ρ1h2

ρ2h1 + ρ1h2

(
g

∆ρ

ρ1
(H − h2)−

H2u2
2

(H − h2)2

)
,

N = − ρ1h2

ρ2h1 + ρ1h2

Hh2

H − h2
u2.
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Eigenvalues and eigenvectors

Nontrivial eigenvalues (trivial ones : 0 and T ) :

det
(
−λ h2

2
M 2N − λ

)
= λ2 − 2Nλ− h2

2M = 0 (43)

and the solution

λ± = N ±
√

N2 + Mh2
2. (44)

The discriminant of this equation is

D =
ρ1ρ2h1h3

2
(ρ2h1 + ρ1h2)2

{
g∆ρ

(
h1

ρ1
+

h2

ρ2

)
−

H2u2
2

h2
1

}
. (45)

The eigenvalues (43) are real and, hence, the system is
hyperbolic when D is positive.
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Loss of hyperbolicity
If

(u2 − u1)2 =
H2u2

2

h2
1

> g∆ρ

(
h1

ρ1
+

h2

ρ2

)
(46)

then D < 0 and the sytem loses hyperbolicity. The former
condition may be rewritten as a condition on u2

u2
2 > g∆ρ

(
h1

ρ1
+

h2

ρ2

)
h2

1
H2 .

We, thus, see that, unlike its one-layer counterpart, the
2-layer RSW changes type if the vertical shear of the
transverse velocity is too strong. One may recognise in
(46) the condition for Kelvin-Helmholtz (KH) instability.
The KH instability is known to produce breaking of the
growing interface wave with production of KH billows.
This expected singularity is of different nature with
respect to shock formation.
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V. Zeitlin, ed. "Nonlinear dynamics of rotating shallow
water : methods and advances", Springer, NY, 2007,
391p.
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