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Oceanic currents : Gulfstream B .

model & properties
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Gulfstream (left) and related vortices (right). Velocity
follows isopleths of the height anomaly in the first
approximation.




Coastal current and associated vortices

Velocity (arrows) and temperature anomaly (colors) of the
Leeuwin curent near Australian coast.
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Destabilizing coastal flow

Instability of a coastal current in the Weddell sea.

Lecture 1:
Derivation of the
model & properties

Large-scale
atmospheric and
oceanic flows

Atmosphere




500

1000

1500
Increasing
Depth
2000
(m)
l 2500
3000
3500
4000
4500

1.023
o]

Mean oceanic stratification

Increasing Density (glcm:’) —_—

1.024

1.025 1.026

1.027

1.028

1.029

Pycnocline

Lecture 1:
Derivation of the
model & properties

Large-scale
atmospheric and
oceanic flows

Modeling
large-scale
processes :
primitive equations
on the tangent
plane

Ocean

Atmosphere

Vertical averaging
of the primitive
equations

Rotating shallow
water model(s)

Properties of the
RSW model(s)

Properties of 1-layer RSW

Conservation laws
Lagrangian description
Hyperbolicity and shocks

Properties of 2-layer RSW
model

Conservation laws

Possible loss of
hyperbolicity

Literature



Primitive equations : ocean

Hydrostatics
gp+0,P =0, (1)

P = P0+PS(Z)+7T(Xayvz;t))
p = potps(2)+o(x,y,z;t), po>ps>o

Incompressibility

V-V=0, V=,+2w. (2)
Euler : .
8Vh R N = =
WJrv-Vvthszvh:—thb. (3)
¢ = % - geopotential.
Continuity :

Op+V-Vp=0. (4)
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Mean atmospheric stratification Dervaton f the

model & properties
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Primitive equations : atmosphere, Dervaton f the
. . . model & properties
pseudo-height vertical coordinate

a—;’+\7ﬁ*h+fm V= —Vho, (5)
0 0¢
—g—+—=0 6
9 R . . R Atmosphere
a—+v-V6:0; V.-v=0. (7)
ot
Identical to oceanic ones with o — —#, potential
temperature.

Vertical coordinate : pseudo-height, P - pressure.

zZ=2z <1 - (,2),2) (8)



Material surfaces

g /2

W

w2=dz2/dt g
— {—22/'

T~ wil= dzt/dt | - Z1
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Vertical averaging and RSW models Dervaton f the

model & properties

» Take horizontal momentum equation in conservative
form :

(pU)t + (pUP)x + (pvu)y + (pwu)z — fpv = —px, (9)

and integrate between a pair of material surfaces
Z12 .

az; . . .
wl, = E’ = 0z + udxzi + viyzj, 1=1,2. (10)  Jeeaaeono
equations

» Use Leibnitz formula and get :

22 22
Ot dzpu + 8x/ dz,ou2—|—8y/ dzpuv —

Zq Z4q

22

f dzpvy = —8X/ azp — Oxz1 Pl,, + Ox22 Pl -

Z1

(analogously for v).



» Use continuity equation and get

22 22 Z2
3t/ de+<9x/ deu+8y/ dzpv =0. (11)

» Introduce the mass- (entropy)- averages :

/ dzpF, p= / azp.

and obtain averaged equations :

(12)

01 (1(u)) + B ((UP)) + By (s{uv)) = Frdv)

22
= —8X/ azp — Oxz4 p\21 + Ox 2o p\zZ,
Z1

(13)

O (V) + Ox (uluv)) + By ((v3)) + fdu)

22
= _a,V/ dzp - 8}/21 p’z1 + 6}’22 p|22 ’
Z1

Ot + Ox (u(u)) + 9y (u(v)) = 0.

(14)

(15)
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Lecture 1:

» Use hydrostatics and get, introducing mean constant ervaton ofhe
density p :
p(x.y,z,t) ~ —gp(z — z1) + pl, - (16)
» Use the mean-field (= columnar motion)

approximation :

(uv) = (up(v), (U%) = (u){u), (v®) = (v)(v). (17)

and get master equation for the layer : of the primitive

equations

p(zo — 21)(Ovh +V - VVp + fZ A V) =
(20 — 21)?
_ Vh<—gp(221)+(22—21).0’z1>

— Vnzi ply, +Vhz2 ply, - (18)

» Pile up layers, with lowermost boundary fixed by
topography, and uppermost free or fixed.



1-layer RSW, z; =0,z =h

ONV+V-Vv+fzZAV+gVh=0,

= 2d barotropic gas dynamics + Coriolis force.
In the presence of nontrivial topography b(x, y) :
h — h— bin the second equation.

Lecture 1:
Derivation of the
model & properties

Rotating shallow

water model(s)



2-layer RSW, rigid lid : z; = 0, z = h, Lecture 1:
Derivation of the

23 = H = ConS’[ model & properties

A 1 .
O+ V- VV;i +fZAVi+ —Vm=0,i=1,2; (21)

I

8th+V-(V1h):0, (22)
O(H—h)+ V- (va(H—h)) =0, (23)
m = (p1 — p2)gh + 2. (24)

Rotating shallow
water model(s)




2-layer rotating shallow water model with a Dervaton f the
model & properties
free surface : z1 =0, zo = hy, zZ3 = hy + ho

OtVo + Vs - VVso + fz A Vo = —V(h1 + h2) (25)
OV1 4+ Vq - VVq + FZ A vy = —V(rhy + hy), (26)
Othi2+V - (Vi2h12) =0, (27)

where r = p—; < 1 - density ratio, and h » - thicknesses of
the layers.

~

Rotating shallow
water model(s)
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Useful notions B .

model & properties

Balanced vs unbalanced motions
Geostrophic balance : balance between the Coriolis force
and the pressure force. In shallow-water model :

f2 = —gVh (28)

Valid at small Rossby numbers : Ro = U/fL, where U, L -
characteristic velocity and horizontal scale. Balanced
motions at small Ro : vortices. Unbalanced motions :
inertia-gravity waves.

Properties of the

Relative, absolute and potential vorticity RSW model(s)
Relative vorticity in layered models : ( =2 -V A v.
Absolute vorticity C + f. Potential vorticity (PV) :

_ <+
Q12 =




Dynamical actors in RSW : vortices & waves
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Conservation laws (no topography)

Equations in conservative form (momentum & mass)

2

d¢(hu) + dx(hu?) + 8, (huv) — fhv + gaxg = 0,
h2

d(hv) + dx(huv) + 0, (hv?) + fhu + 9oy = 0.

oth + ax(hU) + 8y(hv) = 0.

Energy

2 2 2
E:/dxdye:/dxdy <h“ ;V +g2>,

is locally conserved : 9;e + V - fg = 0.

Lagrangian conservation of potential vorticity :
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Lagrangian view of RSW dynamics Dervaton o the

model & properties

Mapplng : (Xay) - (X(va; t)7 Y(X7y; t))
Equations of motion (dot - Lagrangian derivative) :

X—fY = —gdxh,
Y—i—fX = —gﬁyh.
(29)

Mass conservation : h(x,y) = h(X, Y)J(X,Y), where
hy = h(x, y;0), 7(X, Y) = 2X1) _ jacobian of the

) — o(xy)
mapping.
Hence :
_o(h,Y) _a(hY) 1 1
h =¥y = apy) XY =T (T

ant similarly for 9y h.



"1.5 dimensional" RSW B .

model & properties

. oh
X—fv+qa—x =0, (31)
(VLX) = 0,

with h(X, t) = hy(x)3%. Hence, v is not an independent
variable.

Alternatively (hy = H = const, for simplicity ; h; may be

always "straightened" by additional change of variables
X — a):

0
— f H—
u-fv+g da2J? =0
v+ fu=0,
: a U Hyperbolicity and shocks
J— 2= =0.
Here J = aa = h(;l,t)’ P= gjﬁ - Lagrangian pressure.



Reduction B .

model & properties

Rewrite the Lagrangian equations of motion as a system
of 2 equations

atu + 8aP == V,
O —8u = 0, (32)

where v is not an independent variable and is given by

dav = Q(a) — J, Q(a) - potential vorticity :

Qa)=4 (% + 1) =4 (% + fJ,). and the Lagrangian
time-derivative is denoted by 0;. (Dimensionful

parameters will be omitted ; correct dimensions easy to

recover.) Hyporalcty andshocks



Quasilinear system Deriationof the

model & properties
u (0 —J-3 u\ (v (34)
J),"\-1 0 J), \o)"

Eigenvalues and left eigenvectors : . = +J? and
<1 ,iJ*%). Riemann invariants : wy = u + 2J*%,

OtWx + usrOgWy = V. (35)

Original variables in terms of wy :
1
u= 5wy +wn), (36)

16
J=———=>0 37
(WJ’_ - W_ )2 > ’ ( ) Hyperbolicity and shocks

3
o W+ — Ww_
— (4) . (38)
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In terms of the derivatives of the Riemann invariants
ry = 0wy we get

rore + é)M—ir,rjt =0av =Q(a) - J,

0
Otrs + p+0al+ + ors I
(39)

+

ow,
which may be rewritten using "double Lagrangian”
derivatives % = Ot + p+0, a@s

ary  Oust Ops
e el = - 4
at. + 8W+r+ri+ RGeS Qa)—J, (40)
and breaking and shock formation correspond to in
ry — oo in finite time.

Hyperbolicity and shocks



Lecture 1:

Ricatti equation Derivation o the

model & properties

In terms of new variables Ry = e*ry, with
A= % log |w; — w_|, equations (39) may be rewritten as
de: _ Y aui

G s =R +eMQa)-J), (41

9
where 5o£ = S (wy —w )2 > 0.
This is a generalized Ricatti equation and from its

qualitative analysis it follows that :

1. if initial relative vorticity Q — J = 04V is sufficiently
negative, breaking takes place whatever initial
conditions are
2. if the relative vorticity is positive as well as the
derivatives of the Riemann invariants at the initial Hypeboly and shocks
moment, there is no breaking.



Conservation laws of the 2-layer RSW (no

topography)

» Overall momentum (modulo Coriolis force)
» Mass layerwise
» Energy :

E = /dxdy [(gh1v12 + %h2V22>

p p
+ <§1Qh12 + ?zghg) + p19h hz]

» Potential vorticity layerwise, Lagrangian :

Lecture 1:
Derivation of the
model & properties



2-layer 1.5d RSW model with a rigid lid

Basic equations :

Oruy + Uy dxuy — fvg + py ' dxmy =0 ,

Otvi + uy(f + Oxvq) =0,

OtUp + UpOxlp — fvo + P2_1ax7r1 +9'0xn =0,
OtV + Uo(f + Oxv2) =0,

9(Hy —n) + 0x((Hy — n)ur) =0,

9t(Hz +n) + 0x((Hz2 + n)uz) =0,

(uy, v1), (U2, v2) velocities in upper/lower layer ;

o = m + g(p1h1 + p2h2) , n - interface displacement, H;
and H. - heights of two layers at rest ; possible to use the
full layers’ heights hy o = Hy » = 7 as dynamical variables,

¢’ is reduced gravity : g’ = g(p2 — p1)/pe-
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4 equations for 4 variables us, ho, Vo, vy

Eliminating barotropic pressure and imposing zero
transverse momentum :

dUg

W_f‘@ + p1<f(h1V1—|—h2V2)

p2hy + p1he
gA

— Ox (Muf + mud) + =Ly axhz) =0,

P1

dh
th + hodylp = 0,

av
7; + (U1 — Ug)aXV1 + fU1 = 0,

o,

at + fu, = 0,

_ huw

Here & = ; + up0x -Lagrangian derivative.

hy = H— ho.
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Further simplifications Dervaton f the

model & properties

Use of the mass Lagrangian variable a : h, = da/0x) :

dup P1 (
— —fvo + ————— | f(vs+ hov.
o > A (hyvi + have)
0 glAp
- he (h1 w2+ hzug) +5 Ehy hzaahg) — 0,
adh
72? + hgaaUQ = 07
dV2
T2y, =
at + fu, =0,
dV1

E + (U1 — Ug)hgaaw + fuy = 0.

Possible loss of
hyperbolicity
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Va 00 0 O V2 —fup
dfw |, JoT o0 0 |o|w|_ —fuy
at | m 00 0 M |[dal|l ho |~ 0 ’

Us 00 M 2N U the e o

Hu.
T=(uy—u)h = H_Zthza
p1he Ap H?u3

= 7H_h 711 L \0 9

p2hi + p1he <g P ( 2) (H— hp)?
p1h2 Hh2

— Us.
pahy + p1hy H— by °

Possible loss of
hyperbolicity



Eigenvalues and eigenvectors Dervaton o the

model & properties

Nontrivial eigenvalues (trivialones : 0and T) :

-\ h 2 207
det< y 2N_)\>)\ “2NA-HBM=0 (43)

and the solution

Ar = N+ /N2 + MR2. (44)

The discriminant of this equation is

p1p2hi h3 <h1 h2> H?u3
p— el Jon, (D T2y _ . (45
(p2hi + p1ho)? I o T e h2 43)

The eigenvalues (43) are real and, hence, the system is
hyperbolic when D is positive.

Possible loss of
hyperbolicity



Loss of hyperbolicity

If
2,2

H=u. hy h
(up — uy)? = h22 > ghQp <p: + pz) (46)
1

then D < 0 and the sytem loses hyperbolicity. The former
condition may be rewritten as a condition on u»

h h h2
1y 2) un
P1 H

u2 > gAp(

We, thus, see that, unlike its one-layer counterpart, the
2-layer RSW changes type if the vertical shear of the
transverse velocity is too strong. One may recognise in
(46) the condition for Kelvin-Helmholtz (KH) instability.
The KH instability is known to produce breaking of the
growing interface wave with production of KH billows.
This expected singularity is of different nature with
respect to shock formation.
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model & properties
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