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Aim of this lecture:

to present some very recent developments on upwind fluxes
for hyperbolic equations

I Part A: Generalization of the Osher-Solomon Riemann solver
(with Michael Dumbser)

I Part B: New flux vector splitting type schemes
(with Maria E. Vázquez-Cendón)
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Part A:
A generalization of the Osher-Solomon

Riemann solver

DOT: Dumbser-Osher-Toro solver
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Method is applicable to any hyperbolic system.

There are 2 cases:

I Eigenstructure, analytically available. Use it.

I Eigenstructure, NOT analytically available. Compute it
numerically and use it.
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A1. INTRODUCTION
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∂tQ + ∂xF(Q) = 0 (1)

Q = [q1, q2, ..., qm]T , F(Q) = [f1, f2, ..., fm]T

Jacobian matrix: A(Q) = ∂F(Q)
∂Q

Eigenvalues: λ1(Q), λ2(Q), . . . , λm(Q)

Right eigenvectors: R1(Q),R2(Q), . . . ,Rm(Q)
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Jacobian matrix is diagonalizable:

A(Q) = R(Q)Λ(Q)R(Q)−1 (2)

R(Q): matrix of right eigenvectors

R(Q)−1: inverse of R(Q)

Λ(Q): diagonal matrix, diagonal entries are the eigenvalues.
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Conservative scheme:

Qn+1
i = Qn

i −
∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
(3)

Numerical flux: Fi+ 1
2

computed by solving:

The Riemann problem

∂tQ + ∂xF(Q) = 0

Q(x , 0) =


Q0 ≡ Qn

i , if x < 0,

Q1 ≡ Qn
i+1, if x > 0.

 (4)
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Riemann solvers:

I Exact Riemann solver (Godunov 1959)
I Linearised Riemann solver of Godunov (1960)
I One-wave solver of Rusanov (1961)
I Linearised Riemann solver of Roe (1981)
I Non-linear solver of Osher-Solomon (1982)
I Two-wave solver of Harten-Lax-van Leer (1983)
I Variations of HLL: HLLE, HLLEM
I HLLC (many-wave solver)
I Other approaches (eg FVS)

Centred fluxes (0-wave models):

I Flux of Lax-Friedrichs (1960)
I FORCE flux of Toro (1996) (related to scheme of Tadmor and

collaborators)

Toro E F. Riemann solvers and numerical methods for fluid dynamics. Springer, Third Edition, 2009.
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We now introduce the definitions

λ+
i (Q) = max(λi (Q), 0) , λ−i (Q) = min(λi (Q), 0) (5)

Note that

|λi (Q)| = λ+
i (Q)− λ−i (Q) ,

λi (Q) = λ+
i (Q) + λ−i (Q) .

 (6)

and hence

|Λ(Q)| = Λ+(Q)− Λ−(Q) ,

Λ(Q) = Λ+(Q) + Λ−(Q) .

 (7)
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Then the diagonalization process is extended as

A+(Q) = R(Q)Λ+(Q)R−1(Q) ,

A−(Q) = R(Q)Λ−(Q)R−1(Q) ,

|A(Q)| = R(Q)|Λ(Q)|R−1(Q) .

 (8)

It follows that

|A(Q)| = A+(Q)− A−(Q) ,

A(Q) = A+(Q) + A−(Q) .

 (9)
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A2. THE OSHER-SOLOMON FLUX (1982)
BRIEF REVIEW

Chapter 12 of
Toro E F. Riemann solvers and numerical methods for fluid dynamics. Springer, Third Edition, 2009.

13 / 85



The Osher-Solomon numerical flux (1982) is obtained by first
assuming the flux splitting

F(Q) = F+(Q) + F−(Q) , (10)

with corresponding Jacobians

A+(Q) =
∂F+(Q)

∂Q
, A−(Q) =

∂F−(Q)

∂Q
. (11)

The Osher-Solomon flux is defined as

Fi+ 1
2
(Q0,Q1) = F+(Q0) + F−(Q1) . (12)
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From (11) we may write the integral relations∫ Q1

Q0

A−(Q)dQ = F−(Q1)− F−(Q0) (13)

and∫ Q1

Q0

A+(Q)dQ = F+(Q1)− F+(Q0) . (14)

15 / 85



Then we can express (12) in three different forms, namely

Fi+ 1
2

= F(Q0) +

∫ Q1

Q0

A−(Q)dQ , (15)

Fi+ 1
2

= F(Q1)−
∫ Q1

Q0

A+(Q)dQ (16)

and

Fi+ 1
2

=
1

2
(F(Q0) + F(Q1))− 1

2

∫ Q1

Q0

|A(Q)|dQ . (17)
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To obtain (20), for example, we use (24) to write

F(Q0) = F+(Q0) + F−(Q0) .

Then, writing (12) as

Fi+ 1
2

= F+(Q0) + F−(Q1) + F(Q0)− F(Q0)

= F(Q0) + F+(Q0) + F−(Q1)− F(Q0)

= F(Q0) + F+(Q0) + F−(Q1)− (F+(Q0) + F−(Q0))

= F(Q0) + F−(Q1)− F−(Q0)

= F(Q0) +
∫ Q1

Q0
A−(Q)dQ .


(18)

and using (14) expression (20) follows.
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Osher’s flux from

Fi+ 1
2

= F(Q0) +

∫ Q1

Q0

A−(Q)dQ , (19)

To evaluate the integral in phase space one requires a path
One selects the path so as to make the integration tractable.

A path I(Q) connecting the state Q0 to Q1 is defined as

I(Q) = ∪m1 Ik(Q) , (20)

Q(k−1)/m: intersection points in phase space.

Ik(Q): partial path associated with the k-th field.

Complete details in Chapter 12 of
Toro E F. Riemann solvers and numerical methods for fluid dynamics. Springer, Third Edition, 2009.
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A4. GENERALIZATION OF THE OSHER SCHEME
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The Osher-Solomon numerical flux (1982) may be defined as

Fi+ 1
2

=
1

2
(F(Q0) + F(Q1))− 1

2

∫ Q1

Q0

|A(Q)|dQ . (21)

I Evaluation of an integral in phase space is required

I Integration path chosen joining Q0 to Q1 required

I Here we first propose to select the canonical path

ψ(s; Q0,Q1) = Q0 + s(Q1 −Q0) , s ∈ [0, 1] (22)

to evaluate the integral in (21).
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Note that under a change of variables we obtain

Fi+ 1
2

=
1

2
(F(Q0) + F(Q1))− 1

2

 1∫
0

|A(ψ(s; Q0,Q1))| ds

 (Q1 − Q0) .

(23)
Then we evaluate the integral in (23) numerically along path ψ using a
Gauss-Legendre quadrature rule with G points sj and associated weights

ωj in the unit interval I = [0, 1],

Fi+ 1
2

=
1

2
(F(Q0) + F(Q1))− 1

2

 G∑
j=1

ωj |A(ψ(sj ; Q0,Q1))|

 (Q1 − Q0) .

(24)
Note that |A(ψ(sj ; Q0,Q1))| must be decomposed as in (9)

for each sj
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A5. NUMERICAL RESULTS
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Euler equations with JWL EOS.
Shock-bubble interaction using conservative DOT:

pressure contours at t̃ = 0.25 (left)
and t̃ = 0.35 (right)
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Euler equations with JWL EOS.
Shock-bubble interaction using conservative DOT:

numerical Schlieren at t̃ = 0.25 (left)
and t̃ = 0.35 (right)
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Euler equations with JWL EOS.
Shock-bubble interaction using adaptive DOT scheme:

numerical Schlieren at t̃ = 0.25 (left) and t̃ = 0.35 (right)
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Euler equations with JWL EOS.
Shock-bubble interaction using adaptive DOT scheme:

numerical Schlieren (upper) and pressure contours (lower), at t̃ =
0.25 (left) and t̃ = 0.35 (right)
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Euler equations with JWL EOS.
Pressure (red) and density (green) distribution along ỹ = 0.5 of

two-dimensional shock-bubble interaction using conservative DOT
(dashed line) and adaptive DOT (solid line), at t̃ = 0.25 (top) and

t̃ = 0.35 (bottom)
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Part A: Concluding Remarks
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I Generalized Osher-type scheme presented

I It is applicable to any hyperbolic system

I Scheme preserves good properties of original scheme

I Scheme resolves some difficulties of original scheme

I Applications include: Euler equations with general equations
of state; two-phase flow; blood flow; shallow water flows, etc.
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Part B:

New flux splitting schemes for the Euler
equations
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B1: The Euler Equations and Flux Splitting
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The Euler equations in one space dimension are

∂tQ + ∂xF(Q) = 0 , (25)

where Q is the vector of conserved variables and F(Q) is the flux
vector, both given as

Q =

 ρ
ρu
E

 , F(Q) =

 ρu
ρu2 + p
u(E + p)

 . (26)

Here ρ is density, u is particle velocity, p is pressure and E is total
energy given as

E = ρ(
1

2
u2 + e) . (27)

The specific internal energy e is, in general, a function of other
variables via an equation of state. For example, e may be taken to

be a function of density and pressure, namely

e = e(ρ, p) . (28)
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For ideal gases

e(ρ, p) =
p

ρ(γ − 1)
, (29)

where 1 < γ < 3 is the ratio of specific heats. For air at moderate
pressures and temperatures one uses γ = 1.4.

For solving numerically equations of the type (25) we adopt a
conservative method of the form

Qn+1
i = Qn

i −
∆t

∆x
[Fi+ 1

2
− Fi− 1

2
] , (30)

where Fi+ 1
2

is the numerical flux. For background on the Euler

equations and conservative schemes of the form (30).
Flux vector splitting:

F(Q) = A(Q) + P(Q) , (31)
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B2: The Liou-Steffen Splitting
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Liou and Steffen (1993) split the flux vector into and advection
part A(Q) and a pressure part P(Q) as follows

F(Q) = A(Q) + P(Q) ,

with

A(Q) =

 ρu
ρu2

ρuH

 , P(Q) =

 0
p
0

 , (32)

where

H =
E + p

ρ
(33)

is the enthalpy.
From the numerical point of view the aim is to obtain a numerical

flux for (30) of the form

Fi+ 1
2

= Ai+ 1
2

+ Pi+ 1
2

(34)

by finding partial advection and pressure fluxes Ai+ 1
2

and Pi+ 1
2
.
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Liou and Steffen express A(Q) as

A(Q) = M

 ρa
ρau
ρaH

 , (35)

where M = u/a is the Mach number and a =
√
γp/ρ is the speed

of sound. The advection flux is then taken as

Ai+ 1
2

= Mi+ 1
2
Âi+ 1

2
, (36)

with

Âi+ 1
2

=



 ρa
ρau
ρaH

n

i

if Mi+ 1
2
≥ 0 ,

 ρa
ρau
ρaH

n

i+1

if Mi+ 1
2

< 0 .

(37)
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The advection flux is upwinded according to advection speed
implied in the Mach number Mi+ 1

2
, which is split as

Mi+ 1
2

= M+
i + M−i+1 , (38)

with

M± =

{
±1

4 (M±1)2 if | M | ≤ 1 ,
1
2 (M± | M |) if | M | > 1 .

(39)

The pressure vector Pi+ 1
2

is constructed by splitting the pressure as

pi+ 1
2

= p+
i + p−i+1 , (40)

with two choices for the negative and positive components

p± =

{ 1
2p(1±M) if | M | ≤ 1 ,
1
2p

(M±|M|)
M if | M | > 1 ,

(41)

and

p± =

{ 1
4p(M±1)2(2∓M) if | M | ≤ 1 ,
1
2p

(M±|M|)
M if | M | > 1 .

(42)
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B3: The Zha-Bilgen Splitting
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Zha and Bilgen (1993) split the flux vector into as in (31) with

A(Q) =

 ρu
ρu2

uE

 , P(Q) =

 0
p
pu

 . (43)

Numerically, they propose fluxes Ai+ 1
2

and Pi+ 1
2

as follows.

Ai+ 1
2

= A+
i + A−i+1 , (44)

where

A−i = min(0, uni )Qn
i , A+

i = max(0, uni )Qn
i . (45)

For the pressure flux vector Zha and Bilgen use the splitting

Pi+ 1
2

= P+
i + P−i+1 . (46)
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For the p component Zha and Bilgen adopt the Liou-Steffen
splitting (40), (41), while for the pu component they propose

(pu)i+ 1
2

= (pu)+
i + (pu)−i+1 , (47)

where

(pu)−i = pni


uni if Mn

i ≤ −1 ,
1
2 (uni − ani ) if −1 < Mn

i < 1 ,
0 if Mn

i ≥ 1 ,
(48)

and

(pu)+
i = pni


0 if Mn

i ≤ −1 ,
1
2 (uni + ani ) if −1 < Mn

i < 1 ,
uni if Mn

i ≥ 1 .
(49)

Finally the Zha-Bilgen numerical flux is

Fi+ 1
2

= A+
i + P+

i + A−i+1 + P−i+1 . (50)
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B4: A Flux-Splitting Framework
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The framework.
We propose to split system (25) via the flux splitting (31) into the

two systems

∂tQ + ∂xA(Q) = 0 ,

∂tQ + ∂xP(Q) = 0 ,

 (51)

called respectively the advection system and the pressure system.
The aim is then to compute a numerical flux as

Fi+ 1
2

= Ai+ 1
2

+ Pi+ 1
2
, (52)

where Ai+ 1
2

and Pi+ 1
2

are obtained respectively from appropriate

Cauchy problems for the advection and pressure systems (51).
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Consider the Cauchy problem for the linear advection equation

∂tq(x , t) + λ∂xq(x , t) = 0 ,−∞ < x <∞ , t > 0 ,
q(x , 0) = h(x) ,

}
(53)

where λ is a constant. The exact solution of IVP (53) after a time
∆t is

q(x ,∆t) = h(x − λ∆t) . (54)

We now decompose the characteristic speed λ as

λ = βλ+ (1− β)λ = λa + λp , 0 ≤ β ≤ 1 , (55)

with definitions

λa = βλ , λp = (1− β)λ , (56)

so as to obtain two linear partial differential equations, namely

∂tq + λa∂xq = 0 , ∂tq + λp∂xq = 0 . (57)
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Now consider first the Cauchy problem for the advection equation

∂t q̃ + λa∂x q̃ = 0 ,
q̃(x , 0) = h(x) ,

}
(58)

the solution of which after a time ∆t1 is

q̃(x ,∆t1) = h(x − λa∆t1) . (59)

Consider the Cauchy problem

∂t q̄ + λp∂x q̄ = 0 ,
q̄(x , 0) = h(x − λa∆t1) .

}
(60)

The exact solution of IVP (60), after a time ∆t2, is

q̄(x ,∆t2) = h(x − λa∆t1 − λp∆t2) . (61)

The combined solution of IVPs (58) and (60) for ∆t1 = ∆t2 = ∆t
is

q̄(x ,∆t) = h(x − (λa + λp)∆t) = h(x − λ∆t) = q(x ,∆t) . (62)
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The above result can be stated as the following proposition.

Proposition 1. The exact solution of the initial value problem
(53) can be obtained by solving in sequence the initial-value
problems (58) and (60).
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Remarks:

I In the wave decomposition (55),(56) of the model problem
(53) the characteristic speeds to be arbitrarily different.

I From the numerical point of view, Proposition 1 suggests a
way to compute a numerical flux for IVP (53) by computing
numerical fluxes for IVPs (58) and (60). This would lead to
split flux vector splitting methods and could potentially be of
use to deal with systems in which there is large disparity in
the magnitude of the wave speeds present.

I For the full non-linear problem the proposed framework has
two components: (a) the particular way the full system is split
into two subsystems and (b) the numerical treatment of each
subsystem to produce corresponding advection and pressure
numerical fluxes.
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B5: A Novel Splitting for the Euler Equations
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Here we propose a new splitting for the Euler equations by noting
that the flux may be decomposed thus

F(Q) =

 ρu
ρu2 + p

u( 1
2ρu

2 + ρe + p)

 =

 ρu
ρu2

1
2ρu

3

+

 0
p

u(ρe + p)

 ,

(63)
with the corresponding advection and pressure fluxes defined as

A(Q) = u

 ρ
ρu

1
2ρu

2

 , P(Q) =

 0
p

u(ρe + p)

 . (64)
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Remarks:

I The proposed advection flux A(Q) contains no pressure terms.

I All pressure terms from the flux F(Q), including that of the
total energy E , are now included in the pressure flux P(Q).

I The advection flux may be interpreted as representing
advection of mass, momentum and kinetic energy.

I For the ideal gas case (29) the pressure flux (64) becomes

P(Q) =

 0
p
γ
γ−1pu

 . (65)
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The advection system is

∂tQ + ∂xA(Q) = 0 , (66)

where Q = [ρ, ρu,E ]T and A(Q) as in (64) above. In quasi-linear
form the advection system becomes

∂tQ + M(Q)∂xQ = 0 , (67)

where M(Q) is the Jacobian matrix given as

M(Q) =


0 0 0

−u2 2u 0

−u3 3
2u

2 0

 . (68)
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It is easy to show that the eigenvalues of this matrix are

λ1 = 0 , λ2 = λ3 = u . (69)

There are only two linearly independent right eigenvectors, namely

R1 = α1

 1
0
0

 , R2 = α2

 1
u

1
2u

2

 . (70)

Thus the system is weakly hyperbolic, as there is no complete set
of linearly independent eigenvectors.

Regarding the nature of the characteristic fields, it is easy to show
that the λ1-field is linearly degenerated and that the λ2-field is
genuinely non-linear if α2 6= 0 and u 6= 0; otherwise it is linearly

degenerate.
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The pressure system.
In terms of the conserved variables Q = [ρ, ρu,E ]T the pressure

system is

∂tQ + ∂xP(Q) = 0 , (71)

with P(Q) as given in (64) above. In quasi-linear form the
advection system becomes

∂tQ + N(Q)∂xQ = 0 , (72)

where N(Q) is the Jacobian matrix given as

N(Q) =


0 0 0

1
2 (γ − 1)u2 −(γ − 1)u γ − 1

γu3 − γuE/ρ γE/ρ− 3
2γu

2 γu

 . (73)
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The eigenvalues of N(Q) are always real and given as

λ1 =
1

2
u − 1

2
A , λ2 = 0 , λ3 =

1

2
u +

1

2
A , (74)

where

A =
√

u2 + 4a2 , a2 =
γp

ρ
. (75)

Here a is the usual speed of sound for the full Euler equations.
In terms of physical variables the system reads

∂tV + B(V)∂xV = 0 , (76)

where

V =

 ρ
u
p

 , B =

 0 0 0
0 0 1/ρ
0 γp u

 . (77)
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Note that, since u < A =
√
u2 + 4a2, the system is always

subsonic, that is

λ1 =
1

2
u − 1

2
A < 0 < λ3 =

1

2
u +

1

2
A . (78)

The right eigenvectors of matrix B in (77) corresponding to the
eigenvalues (74) are

R1 =

 0
2

ρ(u − A)

 , R2 =

 1
0
0

 , R3 =

 0
2

ρ(u + A)

 .

(79)
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B6: Numerical Fluxes for Toro-Vázquez
splitting
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In order to compute advection and pressure fluxes Ai+ 1
2

and Pi+ 1
2

we consider the Riemann problem for each subsystem. We start
with the pressure system.

To compute the flux for the pressure system we consider the
Riemann problem in terms of physical variables

∂tV + B(V)∂xV = 0 ,

V(x , 0) =

{
VL ≡ Vn

i if x < 0 ,
VR ≡ Vn

i+1 if x > 0 .

 (80)

The solution of this problem has structure as shown in Fig. B1.
The wave pattern is always subsonic, with a stationary contact

discontinuity and two non-linear waves to the left and right of the
contact wave.
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t

x

p∗ u∗
(λ2 =

1
2
(u+ A))

(λ1 =
1
2
(u− A))

x = 0

Fig. B1. Structure of the solution of the Riemann problem for the
pressure system.

u∗ =
CRuR − CLuL

CR − CL
− 2

CR − CL
(pR − pL) ,

p∗ =
CRpL − CLpR

CR − CL
+

1

2

CRCL

CR − CL
(uR − uL) ,

 (81)

with

CL = ρL(uL − AL) ; CR = ρR(uR + AR) , (82)

where AL and AR are computed from (75).
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One could improve upon the linear approximation by applying the
exact generalised Riemann invariants throughout. The result is the

2× 2 non-linear system for p∗ and u∗

u∗ −
√

u2∗ + 4
γp∗
ρL

= uL −
√

u2
L + 4

γpL
ρL

,

u∗ +

√
u2∗ + 4

γp∗
ρR

= uL +

√
u2
R + 4

γpR
ρR

.

 (83)

Finally, the numerical flux for the pressure system is given as

Pi+ 1
2

= p∗

 0
1
γ
γ−1u∗

 . (84)

Remark: no visible difference between ”exact” and
approximate solutions.
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The advection system.
Recall that in our splitting (64) the advection operator may be

written thus

A(Q) =

 ρu
ρu2

1
2ρu

3

 = uK(Q) , K(Q) =

 ρ
ρu

1
2ρu

2

 , (85)

Advection of K (mass, momentum and kinetic energy) with speed
u. Here we propose two algorithms.
Algorith 1 (Toro-Vázquez scheme).

A(Q) = u∗
i+ 1

2
K , (86)

where u∗
i+ 1

2

is the intercell advection velocity taken as u∗
i+ 1

2

from

solution (81) of the Riemann problem (80)

Ai+ 1
2

= u∗
i+ 1

2


Kn

i if u∗
i+ 1

2

> 0 ,

Kn
i+1 if u∗

i+ 1
2

≤ 0 .
(87)
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Algorith 2 (TV-AWS scheme). We propose a weighted splitting
scheme, a simple modification of the Zha-Bilgen scheme (1993):

Ai+ 1
2

= A+
i + A−i+1 , (88)

with

A−i =
1

2
(1− ω)uni Kn

i , A+
i =

1

2
(1 + ω)uni Kn

i . (89)

Here

ω = ω(uni ) =
uni√

ε+ (uni )2
, (90)

with ε a small positive number, ε = 0.1, for example.
The function ω(uni ) allows a smooth transition from upwinding
fully to the left and fully to the right, in the vicinity of uni = 0.
The TV-AWS scheme is a weighted averaged scheme and the
Zha-Bilgen scheme, which is recovered by simply setting the

weight to be ω = sign(uni ).
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Summary of the Toro-Vázquez scheme.
In order to compute a numerical flux Fi+ 1

2
for the conservative

scheme (30) we proceed as follows:

I Pressure flux. Evaluate the intercell pressure p∗
i+ 1

2

and

velocity u∗
i+ 1

2

from the solution of the Riemann problem given

in (81) to compute the pressure flux Pi+ 1
2

as in (84).

I Advection flux. We have proposed two options. From
algorithm 1 (TV scheme) we evaluate the advection flux Ai+ 1

2

as in (87). Algorith 2 (TV-AWS) is described in equations
(88) to (90).

I Intercell flux. Compute the intercell flux Fi+ 1
2

as in (52),

namely

Fi+ 1
2

= Ai+ 1
2

+ Pi+ 1
2
. (91)

69 / 85



B7: Reinterpretation of Other Flux Splittings
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The Liou-Steffen scheme
The Liou-Steffen splitting (1993) may be interpreted in our

framework defining the advection system as

∂tQ + ∂xA(Q) = 0 , (92)

with

A(Q) =

 ρu
ρu2

u(E + p)

 (93)

and the pressure system as

∂tQ + ∂xP(Q) = 0 , (94)

with

P(Q) =

 0
p
0

 . (95)
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In terms of primitive variables V = [ρ, u, p]T the pressure system
can be shown to hyperbolic with eigenvalues

λ1 = λ2 = 0 , λ3 = −(γ − 1)u (96)

and three linearly independent eigenvectors

R1 = α1

 1
0
0

 , R2 = α2

 0
1
0

 , R3 = α3

 0
1

−ρ(γ − 1)u

 .

(97)
Here α1, α2 and α3 are scaling factors. Simple calculations show

that the characteristic fields associated with λ1 and λ2 are linearly
degenerate and the characteristic field associated with λ3 is

genuinely non-linear.
Unfortunately we have not been able to find a straightforward

pressure numerical flux by solving the Riemann problem for this
unusual hyperbolic system. Thus the re-interpretation of the

Liou-Steffen splitting in our framework has not been productive.
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The Zha-Bilgen splitting
The Zha-Bilgen splitting (1993) assumes a very natural splitting

that may be interpreted in our framework as follows. The
advection system is

∂tQ + ∂xA(Q) = 0 , A(Q) =

 ρu
ρu2

uE

 (98)

and the pressure system is

∂tQ + ∂xP(Q) = 0 , P(Q) =

 0
p
pu

 . (99)
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In terms of primitive variables V = [ρ, u, p]T the pressure system
can be shown to be hyperbolic with real eigenvalues

λ1 = −C , λ2 = 0 , λ3 = C , (100)

with

C =
√

(γ − 1)p/ρ , (101)

and three linearly independent right eigenvectors

R1 = α1

 0
1
−ρC

 , R2 = α2

 1
0
0

 , R3 = α3

 0
1
ρC

 .

(102)
Here α1, α2 and α3 are scaling factors.
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The Riemann problem for the Zha-Bilgen pressure system in terms
of primitive variables is

∂tV + Z(V)∂xV = 0

V(x , 0) =


VL ≡ Vn

i if x < 0 ,

VR ≡ Vn
i+1 if x > 0 .

 (103)

The structure of the solution is analogous to that shown in Fig. 1,

u∗ =
ρLCLuL + ρRCRuR
ρLCL + ρRCR

− (pR − pL)

ρLCL + ρRCR
,

p∗ =
ρRCRpL + ρLCLpR
ρLCL + ρRCR

− ρLCLρRCR

ρLCL + ρRCR
(uR − uL) ,

 (104)

with

CL =
√

(γ − 1)pL/ρL , CR =
√

(γ − 1)pR/ρR . (105)
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Contact Discontinuity.
Proposition 1. The Zha-Bilgen splitting along with the
Zha-Bilgen numerical scheme cannot sustain isolated stationary
contact discontinuities for the Euler equations.

Proof. Define the problem for a stationary, isolated contact discontinuity
for the ideal gas Euler equations with initial condition

u(x , 0) = 0 , p(x , 0) = p̂ : constant ,∀x such that xL < x < xR ,

ρ(x , 0) =

 ρL if x < x0 ,

ρR if x > x0 ,


(106)

with xL < x0 < xR . Assume the discretisation of [xL, xR ] such that the
contact discontinuity is between cells i and i + 1. Application of the
Zha-Bilgen scheme to any cell away from cells i and i + 1 leaves the flow
undisturbed.
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However, application of the scheme to cell i for one time step gives

E n+1
i =

p̂

γ − 1
+ δi p̂ , δi =

1

2

∆t

∆x

√
γp̂(

1√
ρR
− 1√

ρL
) . (107)

Application of the scheme to cell i + 1 gives an analogous expression but
with δi+1 = −δi . In order to preserve the contact discontinuity unaltered
one requires δi = 0, which is not satisfied by the Zha-Bilgen scheme, as

seen in (107).
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Exact

Fig. 2. Test 6: Stationary isolated contact. Exact (line) and numerical
solution (symbols) using the Zha-Bilgen original scheme (ZB-orig).
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Proposition 2. The Toro-Vázquez splitting (TV) along with their
numerical method can recognise exactly isolated stationary contact
discontinuities for the Euler equations.

Proof. Define the problem for a stationary, isolated contact discontinuity
for the ideal gas Euler equations with initial condition as in (106).
Assume the discretization of the domain [xL, xR ] is such that the cell just
to the left of the discontinuity is i and that immediately to the right of
the discontinuity is i + 1. Application of the TV scheme to any cell away
from cells i and i + 1 leaves the flow indisturbed. Let us now apply the
scheme to cell i for one time step. First we need the solution (81) of the
Riemann problem with initial data (106). Clearly u∗ = ui+ 1

2
= 0 and

p∗ = pi+ 1
2

= p̂. Then it is easy to verify that the state Qn+1
i = Qn

i and
thus the isolated stationary contact is preserved exactly. Application of
the scheme to cell i + 1 gives an analogous result and the proposition is
thus proved.
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Proposition 3. The Zha-Bilgen splitting along with the
Godunov-type numerical method of section 4.2 can recognise
exactly isolated stationary contact discontinuities for the Euler
equations.

Proof. The proof is straightforward and is thus omitted.
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Fig. 3. Test 6: Stationary isolated contact. Exact (line) and numerical
solutions (symbols).
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B8: Numerical Results for the Euler Equations
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Two classes of test problems

Test ρL uL pL ρR uR pR
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01
6 1.4 0.0 1.0 1.0 0.0 1.0

Test problems with exact solution (Toro, 2009)

Test of Woodward and Colella (1984). Reference solution: WAF.

0 ≤ x ≤ 0.1 0.1 < x ≤ 0.9 0.9 < x ≤ 1.0
ρL = 1.0 ρM = 1.0 ρR = 1.0
uL = 0.0 uM = 0.0 uR = 0.0
pR = 1000.0 pM = 0.01 pR = 100.0

 (108)
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Test 1 (sonic flow). Exact (line) and numerical solutions (symbols)
using two numerical schemes (TV and TV-AWS) for the flux

splitting of this paper.
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Test 1 (sonic flow). Exact (line) and numerical solutions (symbols)
using two numerical schemes: Liou-Steffen (LS) and Zha-Bilgen

(ZB-orig).
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Test 2 (low density). Exact (line) and numerical solutions
(symbols) using two numerical schemes (TV and TV-AWS) for the

flux splitting of this paper.

81 / 85



Distance

D
en
si
ty

0 0.25 0.5 0.75 10

1

2

3

4

5

6

TV
Exact

Distance

D
en
si
ty

0 0.25 0.5 0.75 10

1

2

3

4

5

6

TV-AWS
Exact

Test 3 (very strong shock). Exact (line) and numerical solutions
(symbols) using two numerical schemes (TV and TV-AWS) for the

flux splitting of this paper.
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Test 4 (collision of two strong shocks). Exact (line) and numerical
solutions (symbols) using two numerical schemes (TV and

TV-AWS) for the flux splitting of this paper.
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Test 5 (non-isolated stationary contact discontinuity). Exact (line)
and numerical solutions (symbols) using two numerical schemes

(TV and TV-AWS) for the flux splitting of this paper.
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Test 6 (Isolated stationary contact discontinuity). Exact (line) and
numerical solutions (symbols) using two numerical schemes (TV

and TV-AWS) for the flux splitting of this paper.
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Test 6 (Isolated stationary contact discontinuity). Exact (line) and
numerical solutions (symbols) using two numerical schemes: the

Zha-Bilgen original scheme (ZB-orig) and the Zha-Bilgen splitting
with present Godunov-type numerical approach (ZB-God).
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Test 7 (Woodward and Colella blast wave problem). Reference
solutions (WAF and Godunov’s method with exact Riemann

solver) and numerical solutions from two numerical schemes of this
paper: TV (top) and TV-AWS (bottom).
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Other Potential Schemes for the Pressure
System
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I Lax-Friedrichs

I FORCE

I Rusanov

I HLL

I Godunov Centred
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Part B: Concluding Remarks

I New flux splitting

I New way of dealing with pressure term

I Scheme captures contact discontinuity as well as AUSM

I Our scheme is more robust and more accurate than AUSM

I Other schemes for pressure system under study

I Best combination: explicit for advection implicit for pressure
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Thank You

85 / 85


	Other Potential Schemes for the Pressure System

