The HLLC Riemann Solver

Eleuterio TORO

Laboratory of Applied Mathematics
University of Trento, Italy
toro@ing.unitn.it
http://www.ing.unitn.it/toro

August 26, 2012

Abstract：

This lecture is about a method to solve approximately the Riemann problem for the Euler equations in order to derive a numerical flux for a conservative method：

The HLLC Riemann solver

REFERENCES：

E F Toro，M Spruce and W Speares．
Restoration of the contact surface in the HLL Riemann solver．Technical report CoA 9204．Department of
Aerospace Science，College of Aeronautics，Cranfield Institute of Technology．UK．June， 1992.

E F Toro，M Spruce and W Speares．
Restoration of the contact surface in the Harten－Lax－van Leer Riemann solver．Shock Waves．Vol．4，pages 25－34， 1994.

Consider the general Initial Boundary Value Problem (IBVP)

$$
\begin{array}{ll}
\text { PDEs } & : \mathbf{U}_{t}+\mathbf{F}(\mathbf{U})_{x}=\mathbf{0}, 0 \leq x \leq L, t>0 \\
\text { ICs } & : \mathbf{U}(x, 0)=\mathbf{U}^{(0)}(x), \tag{1}\\
\mathrm{BCs} & : \mathbf{U}(0, t)=\mathbf{U}_{\mathrm{l}}(t), \mathbf{U}(L, t)=\mathbf{U}_{\mathrm{r}}(t),
\end{array}
$$

with appropriate boundary conditions, as solved by the explicit conservative scheme

$$
\begin{equation*}
\mathbf{U}_{i}^{n+1}=\mathbf{U}_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathbf{F}_{i+\frac{1}{2}}-\mathbf{F}_{i-\frac{1}{2}}\right] \tag{2}
\end{equation*}
$$

The choice of numerical flux $\mathbf{F}_{i+\frac{1}{2}}$ determines the scheme. There two classes of fluxes:

- Upwind or Godunov-type fluxes (wave propagation information used explicitly) and
- Centred or non-upwind (wave propagation information NOT used explicitly).

Godunov's flux (Godunov 1959) is

$$
\begin{equation*}
\mathbf{F}_{i+\frac{1}{2}}=\mathbf{F}\left(\mathbf{U}_{i+\frac{1}{2}}(0)\right) \tag{3}
\end{equation*}
$$

in which $\mathbf{U}_{i+\frac{1}{2}}(0)$ is the exact similarity solution $\mathbf{U}_{i+\frac{1}{2}}(x / t)$ of the Riemann problem

$$
\begin{align*}
& \mathbf{U}_{t}+\mathbf{F}(\mathbf{U})_{x}=\mathbf{0}, \\
& \mathbf{U}(x, 0)=\left\{\begin{array}{ccc}
\mathbf{U}_{\mathrm{L}} & \text { if } & x<0, \\
\mathbf{U}_{\mathrm{R}} & \text { if } & x>0,
\end{array}\right\} \tag{4}
\end{align*}
$$

evaluated at $x / t=0$.

Example: 3D Euler equations.

$$
\mathbf{U}=\left[\begin{array}{c}
\rho \tag{5}\\
\rho u \\
\rho v \\
\rho w \\
E
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u w \\
u(E+p)
\end{array}\right]
$$

The piece-wise constant initial data, in terms of primitive variables, is

$$
\mathbf{W}_{L}=\left[\begin{array}{c}
\rho_{L} \tag{6}\\
u_{L} \\
v_{L} \\
w_{L} \\
p_{L}
\end{array}\right], \quad \mathbf{W}_{R}=\left[\begin{array}{c}
\rho_{R} \\
u_{R} \\
v_{R} \\
w_{R} \\
p_{R}
\end{array}\right]
$$

The Godunov flux $\mathbf{F}\left(\mathbf{U}_{i+\frac{1}{2}}(0)\right)$ results from evaluation $\mathbf{U}_{i+\frac{1}{2}}(x / t)$ at $x / t=0$, that is along the t-axis.

Fig. 1. Structure of the exact solution $\mathbf{U}_{i+\frac{1}{2}}(x / t)$ of the Riemann problem for the x-split three dimensional Euler equations. There are five wave families associated with the eigenvalues

$$
u-a, u(\text { of multiplicity } 3 \text {) and } u+a \text {. }
$$

Integral Relations

Consider the control volume $V=\left[x_{L}, x_{R}\right] \times[0, T]$ depicted in Fig.
2, with

$$
\begin{equation*}
x_{L} \leq T S_{L}, \quad x_{R} \geq T S_{R} \tag{7}
\end{equation*}
$$

S_{L} and S_{R} are the fastest signal velocities and T is a chosen time. The integral form of the conservation laws in (4) in V reads

$$
\begin{equation*}
\int_{x_{L}}^{x_{R}} \mathbf{U}(x, T) d x=\int_{x_{L}}^{x_{R}} \mathbf{U}(x, 0) d x+\int_{0}^{T} \mathbf{F}\left(\mathbf{U}\left(x_{L}, t\right)\right) d t-\int_{0}^{T} \mathbf{F}\left(\mathbf{U}\left(x_{R}, t\right)\right) d t \tag{8}
\end{equation*}
$$

Evaluation of the right-hand side of this expression gives

$$
\begin{equation*}
\int_{x_{L}}^{x_{R}} \mathbf{U}(x, T) d x=x_{R} \mathbf{U}_{R}-x_{L} \mathbf{U}_{L}+T\left(\mathbf{F}_{L}-\mathbf{F}_{R}\right) \tag{9}
\end{equation*}
$$

where $\mathbf{F}_{L}=\mathbf{F}\left(\mathbf{U}_{L}\right)$ and $\mathbf{F}_{R}=\mathbf{F}\left(\mathbf{U}_{R}\right)$.
We call (9) the consistency condition.

Now split left-hand side of (8) into three integrals, namely

$$
\int_{x_{L}}^{x_{R}} \mathbf{U}(x, T) d x=\int_{x_{L}}^{T S_{L}} \mathbf{U}(x, T) d x+\int_{T S_{L}}^{T S_{R}} \mathbf{U}(x, T) d x+\int_{T S_{R}}^{x_{R}} \mathbf{U}(x, T) d x
$$

Fig. 2. Control volume $\left[x_{L}, x_{R}\right] \times[0, T]$ on $x-t$ plane. S_{L} and S_{R} are the fastest signal velocities arising from the solution of the Riemann problem.

Evaluate the first and third terms on the right-hand side to obtain

$$
\begin{equation*}
\int_{x_{L}}^{x_{R}} \mathbf{U}(x, T) d x=\int_{T S_{L}}^{T S_{R}} \mathbf{U}(x, T) d x+\left(T S_{L}-x_{L}\right) \mathbf{U}_{L}+\left(x_{R}-T S_{R}\right) \mathbf{U}_{R} \tag{10}
\end{equation*}
$$

Comparing (10) with (9) gives

$$
\begin{equation*}
\int_{T S_{L}}^{T S_{R}} \mathbf{U}(x, T) d x=T\left(S_{R} \mathbf{U}_{R}-S_{L} \mathbf{U}_{L}+\mathbf{F}_{L}-\mathbf{F}_{R}\right) \tag{11}
\end{equation*}
$$

On division through by the length $T\left(S_{R}-S_{L}\right)$, which is the width of the wave system of the solution of the Riemann problem between the slowest and fastest signals at time T, we have

$$
\begin{equation*}
\frac{1}{T\left(S_{R}-S_{L}\right)} \int_{T S_{L}}^{T S_{R}} \mathbf{U}(x, T) d x=\frac{S_{R} \mathbf{U}_{R}-S_{L} \mathbf{U}_{L}+F_{L}-F_{R}}{S_{R}-S_{L}} \tag{12}
\end{equation*}
$$

Thus, the integral average of the exact solution of the Riemann problem between the slowest and fastest signals at time T is a known constant, provided that the signal speeds S_{L} and S_{R} are known; such constant is the right-hand side of (12) and we denote it by

$$
\begin{equation*}
\mathbf{U}^{h \prime \prime}=\frac{S_{R} \mathbf{U}_{R}-S_{L} \mathbf{U}_{L}+F_{L}-F_{R}}{S_{R}-S_{L}} . \tag{13}
\end{equation*}
$$

We now apply the integral form of the conservation laws to the left portion of Fig. 10.2, that is the control volume $\left[x_{L}, 0\right] \times[0, T]$. We obtain

$$
\begin{equation*}
\int_{T S_{L}}^{0} \mathbf{U}(x, T) d x=-T S_{L} \mathbf{U}_{L}+T\left(\mathbf{F}_{L}-\mathbf{F}_{0 L}\right) \tag{14}
\end{equation*}
$$

where $\mathbf{F}_{0 L}$ is the flux $\mathbf{F}(\mathbf{U})$ along the t-axis. Solving for $\mathbf{F}_{0 L}$ we find

$$
\begin{equation*}
\mathbf{F}_{0 L}=\mathbf{F}_{L}-S_{L} \mathbf{U}_{L}-\frac{1}{T} \int_{T S_{L}}^{0} \mathbf{U}(x, T) d x \tag{15}
\end{equation*}
$$

Evaluation of the integral form of the conservation laws on the control volume $\left[0, x_{R}\right] \times[0, T]$ yields

$$
\begin{equation*}
\mathbf{F}_{0 R}=\mathbf{F}_{R}-S_{R} \mathbf{U}_{R}+\frac{1}{T} \int_{0}^{T S_{R}} \mathbf{U}(x, T) d x \tag{16}
\end{equation*}
$$

The reader can easily verify that the equality

$$
\mathbf{F}_{0 L}=\mathbf{F}_{0 R}
$$

results in the consistency condition (9). All relations so far are exact, as we are assuming the exact solution of the Riemann problem.

The Harten-Lax-van Leer (HLL) Approximate Riemann Solver (1983).

$$
\tilde{\mathbf{U}}(x, t)=\left\{\begin{array}{ccc}
\mathbf{U}_{L} & \text { if } & \frac{x}{t} \leq S_{L} \tag{17}\\
\mathbf{U}^{h / l} & \text { if } & S_{L} \leq \frac{x}{t} \leq S_{R} \\
\mathbf{U}_{R} & \text { if } & \frac{x}{t} \geq S_{R}
\end{array}\right.
$$

Fig. 3 shows the two-wave structure of this approximate Riemann solver.

Fig. 3. Two-wave model. Approximate HLL Riemann solver.
Solution in the Star Region consists of a single state $\mathbf{U}^{\text {hll }}$ separated from data states by two waves of speeds S_{L} and S_{R}.

The HLL flux $\mathbf{F}^{h l \prime}$ for the subsonic case $S_{L} \leq 0 \leq S_{R}$ is found by inserting $\mathbf{U}^{\text {hll }}$ in (13) into (15) or (16) to obtain

$$
\begin{equation*}
\mathbf{F}^{h \prime \prime}=\mathbf{F}_{L}+S_{L}\left(\mathbf{U}^{h \prime \prime}-\mathbf{U}_{L}\right), \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{F}^{h / \prime}=\mathbf{F}_{R}+S_{R}\left(\mathbf{U}^{h / \prime}-\mathbf{U}_{R}\right) . \tag{19}
\end{equation*}
$$

Use of (13) in (18) or (19) gives the HLL flux

$$
\begin{equation*}
\mathbf{F}^{h \prime \prime}=\frac{S_{R} \mathbf{F}_{L}-S_{L} \mathbf{F}_{R}+S_{L} S_{R}\left(\mathbf{U}_{R}-\mathbf{U}_{L}\right)}{S_{R}-S_{L}} \tag{20}
\end{equation*}
$$

for the subsonic case $S_{L} \leq 0 \leq S_{R}$.

The corresponding HLL intercell flux for the approximate Godunov method is then given by

$$
\mathbf{F}_{i+\frac{1}{2}}^{h / \prime}=\left\{\begin{array}{ccc}
\mathbf{F}_{L} & \text { if } & 0 \leq S_{L} \\
\frac{S_{R} \mathbf{F}_{L}-S_{L} \mathbf{F}_{R}+S_{L} S_{R}\left(\mathbf{U}_{R}-\mathbf{U}_{L}\right)}{S_{R}-S_{L}}, & \text { if } & S_{L} \leq 0 \leq S_{R} \\
\mathbf{F}_{R} & \text { if } & 0 \geq S_{R}
\end{array}\right.
$$

- Given the speeds S_{L} and S_{R} we have an approximate intercell flux (21) to be used in the conservative formula (2) to produce an approximate Godunov method.
- A shortcoming of the HLL scheme, with its two-wave model, is exposed by contact discontinuities, shear waves and material interfaces, or any type of intermediate waves.

The HLLC Approximate Riemann Solver (Toro et al, 1992).

- The HLLC scheme is a modification of the HLL scheme whereby the missing contact and shear waves in the Euler equations are restored.
- HLLC for the Euler equations has a three-wave model

Fig. 4. HLLC approximate Riemann solver. Solution in the Star Region consists of two constant states separated from each other by a middle wave of speed S_{*}.

Useful Relations. Consider Fig. 2.

- Evaluation of the integral form of the conservation laws in the control volume reproduces the result of equation (12), even if variations of the integrand across the wave of speed S_{*} are allowed.
- Note that the consistency condition (9) effectively becomes the condition (12).
- By splitting the left-hand side of integral (12) into two terms we obtain

$$
\begin{equation*}
\frac{1}{T\left(S_{R}-S_{L}\right)} \int_{T S_{L}}^{T S_{R}} \mathbf{U}(x, T) d x=\mathbf{U}_{* L}+\mathbf{U}_{* R} \tag{22}
\end{equation*}
$$

where the following integral averages are introduced

$$
\left.\begin{array}{l}
\mathbf{U}_{* L}=\frac{1}{T\left(S_{*}-S_{L}\right)} \int_{T S_{L}}^{T S_{*}} \mathbf{U}(x, T) d x, \\
\mathbf{U}_{* R}=\frac{1}{T\left(S_{R}-S_{*}\right)} \int_{T S_{*}}^{T S_{R}} \mathbf{U}(x, T) d x . \tag{23}
\end{array}\right\}
$$

Use of (23) into (22) and use of (12), make condition (9)

$$
\begin{equation*}
\left(\frac{S_{*}-S_{L}}{S_{R}-S_{L}}\right) \mathbf{U}_{* L}+\left(\frac{S_{R}-S_{*}}{S_{R}-S_{L}}\right) \mathbf{U}_{* R}=\mathbf{U}^{h / \prime} \tag{24}
\end{equation*}
$$

The HLLC approximate Riemann solver is given as follows

$$
\tilde{\mathbf{U}}(x, t)=\left\{\begin{array}{ccc}
\mathbf{U}_{L}, & \text { if } & \frac{x}{t} \leq S_{L}, \tag{25}\\
\mathbf{U}_{* L}, & \text { if } & S_{L} \leq \frac{x}{t} \leq S_{*}, \\
\mathbf{U}_{* R}, & \text { if } & S_{*} \leq \frac{x}{t} \leq S_{R} \\
\mathbf{U}_{R}, & \text { if } & \frac{x}{t} \geq S_{R}
\end{array}\right.
$$

Now we seek a corresponding HLLC numerical flux of the form

$$
\mathbf{F}_{i+\frac{1}{2}}^{\text {hllc }}=\left\{\begin{array}{llc}
\mathbf{F}_{L} & , & \text { if } \tag{26}\\
\mathbf{F}_{* L} & , & \text { if } \\
S_{L} \leq 0 \leq S_{L} \\
\mathbf{F}_{* R}, & \text { if } & S_{*} \leq 0 \leq S_{R} \\
\mathbf{F}_{R} & , & \text { if } \\
0 \geq S_{R}
\end{array}\right.
$$

with the intermediate fluxes $\mathbf{F}_{* L}$ and $\mathbf{F}_{* R}$ still to be determined, see Fig. 4. By integrating over appropriate control volumes we obtain

$$
\begin{gather*}
\mathbf{F}_{* L}=\mathbf{F}_{L}+S_{L}\left(\mathbf{U}_{* L}-\mathbf{U}_{L}\right), \tag{27}\\
\mathbf{F}_{* R}=\mathbf{F}_{* L}+S_{*}\left(\mathbf{U}_{* R}-\mathbf{U}_{* L}\right), \tag{28}\\
\mathbf{F}_{* R}=\mathbf{F}_{R}+S_{R}\left(\mathbf{U}_{* R}-\mathbf{U}_{R}\right) \tag{29}
\end{gather*}
$$

These are three equations for the four unknowns vectors $\mathbf{U}_{* L}, \mathbf{F}_{* L}$, $\mathbf{U}_{* R}, \mathbf{F}_{* R}$.

We seek the solution for the two unknown intermediate fluxes $\mathbf{F}_{* L}$ and $\mathbf{F}_{* R}$. There are more unknowns than equations and some extra conditions need to be imposed, in order to solve the algebraic problem. We impose

$$
\left.\begin{array}{rl}
p_{* L} & =p_{* R}=p_{*}, \\
u_{* L} & =u_{* R}=u_{*}, \tag{31}
\end{array}\right\} \text { for pressure and normal velocity }(3
$$

Conditions (30), (31) are identically satisfied by the exact solution. In addition we impose

$$
\begin{equation*}
S_{*}=u_{*} \tag{32}
\end{equation*}
$$

and thus if an estimate for S_{*} is known, the normal velocity component u_{*} in the Star Region is known.

Now equations (27) and (29) can be re-arranged as

$$
\begin{align*}
S_{L} \mathbf{U}_{* L}-\mathbf{F}_{* L} & =S_{L} \mathbf{U}_{L}-\mathbf{F}_{L} \tag{33}\\
S_{R} \mathbf{U}_{* R}-\mathbf{F}_{* R} & =S_{R} \mathbf{U}_{R}-\mathbf{F}_{R} \tag{34}
\end{align*}
$$

where the right-hand sides of (33) and (34) are known constant vectors (data). We also note the useful relation

$$
\begin{equation*}
\mathbf{F}(\mathbf{U})=u \mathbf{U}+p \mathbf{D}, \quad \mathbf{D}=[0,1,0,0, u]^{T} \tag{35}
\end{equation*}
$$

Assuming S_{L} and S_{R} to be known and performing algebraic manipulations of the first and second components of equations (33)-(34) one obtains
$p_{* L}=p_{L}+\rho_{L}\left(S_{L}-u_{L}\right)\left(S_{*}-u_{L}\right), \quad p_{* R}=p_{R}+\rho_{R}\left(S_{R}-u_{R}\right)\left(S_{*}-u_{R}\right)$.

From (30) $p_{* L}=p_{* R}$, which from (36) gives

$$
\begin{equation*}
S_{*}=\frac{p_{R}-p_{L}+\rho_{L} u_{L}\left(S_{L}-u_{L}\right)-\rho_{R} u_{R}\left(S_{R}-u_{R}\right)}{\rho_{L}\left(S_{L}-u_{L}\right)-\rho_{R}\left(S_{R}-u_{R}\right)} \tag{37}
\end{equation*}
$$

Manipulation of (33) and (34) and using $p_{* L}$ and $p_{* R}$ from (36) gives

$$
\begin{equation*}
\mathbf{F}_{* K}=\mathbf{F}_{K}+S_{K}\left(\mathbf{U}_{* K}-\mathbf{U}_{K}\right), \tag{38}
\end{equation*}
$$

for $K=L$ and $K=R$, with the intermediate states given as

$$
\mathbf{U}_{* K}=\rho_{K}\left(\frac{S_{K}-u_{K}}{S_{K}-S_{*}}\right)\left[\begin{array}{c}
1 \tag{39}\\
S_{*} \\
v_{K} \\
w_{K} \\
\frac{E_{K}}{\rho_{K}}+\left(S_{*}-u_{K}\right)\left[S_{*}+\frac{p_{K}}{\rho_{K}\left(S_{K}-u_{K}\right)}\right]
\end{array}\right]
$$

The final choice of the HLLC flux is made according to (26).

Variation 1 of HLLC.

From equations (33) and (34) we may write the following solutions for the state vectors $\mathbf{U}_{* L}$ and $\mathbf{U}_{* R}$

$$
\begin{equation*}
\mathbf{U}_{* K}=\frac{S_{K} \mathbf{U}_{K}-\mathbf{F}_{K}+p_{* K} \mathbf{D}_{*}}{S_{L}-S_{*}}, \quad \mathbf{D}_{*}=\left[0,1,0,0, S_{*}\right] \tag{40}
\end{equation*}
$$

with $p_{* L}$ and $p_{* R}$ as given by (36). Substitution of $p_{* K}$ from (36) into (40) followed by use of (27) and (29) gives direct expressions for the intermediate fluxes as

$$
\begin{equation*}
\mathbf{F}_{* K}=\frac{S_{*}\left(S_{K} \mathbf{U}_{K}-\mathbf{F}_{K}\right)+S_{K}\left(p_{K}+\rho_{L}\left(S_{K}-u_{K}\right)\left(S_{*}-u_{K}\right)\right) D_{*}}{S_{K}-S_{*}}, \tag{41}
\end{equation*}
$$

with the final choice of the HLLC flux made again according to (26).

Variation 2 of HLLC.

A different HLLC flux is obtained by assuming a single mean pressure value in the Star Region, and given by the arithmetic average of the pressures in (36), namely

$$
\begin{equation*}
P_{L R}=\frac{1}{2}\left[p_{L}+p_{R}+\rho_{L}\left(S_{L}-u_{L}\right)\left(S_{*}-u_{L}\right)+\rho_{R}\left(S_{R}-u_{R}\right)\left(S_{*}-u_{R}\right)\right] \tag{42}
\end{equation*}
$$

Then the intermediate state vectors are given by

$$
\begin{equation*}
\mathbf{U}_{* K}=\frac{S_{K} \mathbf{U}_{K}-\mathbf{F}_{K}+P_{L R} \mathbf{D}_{*}}{S_{K}-S_{*}} \tag{43}
\end{equation*}
$$

Substitution of these into (27) and (29) gives the fluxes $\mathbf{F}_{* L}$ and $F_{* R}$ as

$$
\begin{equation*}
\mathbf{F}_{* K}=\frac{S_{*}\left(S_{K} \mathbf{U}_{K}-\mathbf{F}_{K}\right)+S_{K} P_{L R} \mathbf{D}_{*}}{S_{K}-S_{*}} \tag{44}
\end{equation*}
$$

Again the final choice of HLLC flux is made according to (26).

Remarks.

- The original HLLC formulation (38)-(39) enforces the condition $p_{* L}=p_{* R}$, which is satisfied by the exact solution.
- In the alternative HLLC formulation (41) we relax such condition, being more consistent with the pressure approximations (36).
- There is limited practical experience with the alternative HLLC formulations (41) and (44).
- General equation of state. All manipulations, assuming that wave speed estimates for S_{L} and S_{R} are available, are valid for any equation of state; this only enters when prescribing estimates for S_{L} and S_{R}.

Multidimensional multicomponent flow.

Consider the advection of a chemical species of concentrations q_{l} by the normal flow speed u. Then we can write the following advection equation

$$
\partial_{t} q_{I}+u \partial_{x} q_{I}=0, \text { for } I=1, \ldots, m .
$$

Note that these equations are written in non-conservative form. However, by combining these with the continuity equation we obtain a conservative form of these equations, namely

$$
\left(\rho q_{l}\right)_{t}+\left(\rho u q_{l}\right)_{x}=0, \text { for } I=1, \ldots, m
$$

The eigenvalues of the enlarged system are as before, with the exception of $\lambda_{2}=u$, which now, in three space dimensions, has multiplicity $m+3$.

These conservation equations can then be added as new components to the conservation equations in (1) or (4), with the enlarged vectors of conserved variables and fluxes given as

$$
\mathbf{U}=\left[\begin{array}{c}
\rho \tag{45}\\
\rho u \\
\rho v \\
\rho w \\
E \\
\rho q_{1} \\
\cdots \\
\rho q_{l} \\
\cdots \\
\rho q_{m}
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u w \\
u(E+p) \\
\rho u q_{1} \\
\cdots \\
\rho u q_{l} \\
\cdots \\
\rho u q_{m}
\end{array}\right] .
$$

The HLLC flux accommodates these new equations in a very natural way，and nothing special needs to be done．If the HLLC flux（38）is used，with \mathbf{F} as in（45），then the intermediate state vectors are given by

for $K=L$ and $K=R$ ．

Wave Speed Estimates

We need estimates S_{L}, S_{*} and S_{R}. Davis (1988) suggested

$$
\begin{equation*}
S_{L}=u_{L}-a_{L}, \quad S_{R}=u_{R}+a_{R}, \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
S_{L}=\min \left\{u_{L}-a_{L}, u_{R}-a_{R}\right\}, \quad S_{R}=\max \left\{u_{L}+a_{L}, u_{R}+a_{R}\right\} . \tag{48}
\end{equation*}
$$

Both Davis (1988) and Einfeldt (1988), proposed

$$
\begin{equation*}
S_{L}=\tilde{u}-\tilde{a}, \quad S_{R}=\tilde{u}+\tilde{a} \tag{49}
\end{equation*}
$$

\tilde{u} and \tilde{a} are the Roe-average particle and sound speeds respectively

$$
\begin{equation*}
\tilde{u}=\frac{\sqrt{\rho_{L}} u_{L}+\sqrt{\rho_{R}} u_{R}}{\sqrt{\rho_{L}}+\sqrt{\rho_{R}}}, \quad \tilde{a}=\left[(\gamma-1)\left(\tilde{H}-\frac{1}{2} \tilde{u}^{2}\right)\right]^{1 / 2} \tag{50}
\end{equation*}
$$

with the enthalpy $H=(E+p) / \rho$ approximated as

$$
\begin{equation*}
\tilde{H}=\frac{\sqrt{\rho_{L}} H_{L}+\sqrt{\rho_{R}} H_{R}}{\sqrt{\rho_{L}}+\sqrt{\rho_{R}}} . \tag{51}
\end{equation*}
$$

Einfeldt (1988) proposed the estimates

$$
\begin{equation*}
S_{L}=\bar{u}-\bar{d}, \quad S_{R}=\bar{u}+\bar{d} \tag{52}
\end{equation*}
$$

for his HLLE solver, where

$$
\begin{equation*}
\bar{d}^{2}=\frac{\sqrt{\rho_{L}} a_{L}^{2}+\sqrt{\rho_{R}} a_{R}^{2}}{\sqrt{\rho_{L}}+\sqrt{\rho_{R}}}+\eta_{2}\left(u_{R}-u_{L}\right)^{2} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{2}=\frac{1}{2} \frac{\sqrt{\rho_{L}} \sqrt{\rho_{R}}}{\left(\sqrt{\rho_{L}}+\sqrt{\rho_{R}}\right)^{2}} . \tag{54}
\end{equation*}
$$

These wave speed estimates are reported to lead to effective and robust Godunov-type schemes.

One-wave model.

Consider a one-wave model with single speed $S^{+}>0$.

- Rusanov: By choosing $S_{L}=-S^{+}$and $S_{R}=S^{+}$in the HLL flux (20) one obtains a Rusanov flux (1961)

$$
\begin{equation*}
\mathbf{F}_{i+1 / 2}=\frac{1}{2}\left(\mathbf{F}_{L}+\mathbf{F}_{R}\right)-\frac{1}{2} S^{+}\left(\mathbf{U}_{R}-\mathbf{U}_{L}\right) \tag{55}
\end{equation*}
$$

- Lax-Friedrichs: Another possibility is $S^{+}=S_{\text {max }}^{n}$, the wave speed for imposing the CFL condition, which satisfies

$$
\begin{equation*}
S_{\max }^{n}=\frac{C_{c f l} \Delta x}{\Delta t} \tag{56}
\end{equation*}
$$

where $C_{c f l}$ is the CFL coefficient. For $C_{c f l}=1, S^{+}=\frac{\Delta x}{\Delta t}$, which gives the Lax-Friedrichs numerical flux

$$
\begin{equation*}
\mathbf{F}_{i+1 / 2}=\frac{1}{2}\left(\mathbf{F}_{L}+\mathbf{F}_{R}\right)-\frac{1}{2} \frac{\Delta x}{\Delta t}\left(\mathbf{U}_{R}-\mathbf{U}_{L}\right) . \tag{57}
\end{equation*}
$$

Pressure-Based Wave Speed Estimates

Toro et al. (1994) suggested to first find an estimate p_{*} for the pressure in the Star Region and then take

$$
\begin{gather*}
S_{L}=u_{L}-a_{L} q_{L}, \quad S_{R}=u_{R}+a_{R} q_{R} \tag{58}\\
q_{K}=\left\{\begin{array}{cll}
1 & \text { if } & p_{*} \leq p_{K} \\
{\left[1+\frac{\gamma+1}{2 \gamma}\left(p_{*} / p_{K}-1\right)\right]^{1 / 2}} & \text { if } & p_{*}>p_{K}
\end{array}\right. \tag{59}
\end{gather*}
$$

- This choice discriminates between shocks and rarefactions.
- If the K wave is a rarefaction then the speed S_{K} is the speed of the head of the rarefaction, the fastest signal.
- If the K wave is a shock wave then the speed is an approximation of the shock speed.

A simple, acoustic type approximation for pressure is (Toro, 1991)

$$
\begin{equation*}
p_{*}=\max \left(0, p_{p v r s}\right), \quad p_{p v r s}=\frac{1}{2}\left(p_{L}+p_{R}\right)-\frac{1}{2}\left(u_{R}-u_{L}\right) \bar{\rho} \bar{a}, \tag{60}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\rho}=\frac{1}{2}\left(\rho_{L}+\rho_{R}\right), \quad \bar{a}=\frac{1}{2}\left(a_{L}+a_{R}\right) . \tag{61}
\end{equation*}
$$

Another choice is furnished by the Two-Rarefaction Riemann solver, namely

$$
\begin{equation*}
p_{*}=p_{t r}=\left[\frac{a_{L}+a_{R}-\frac{\gamma-1}{2}\left(u_{R}-u_{L}\right)}{a_{L} / p_{L}^{z}+a_{R} / p_{R}^{z}}\right]^{1 / z} \tag{62}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{L R}=\left(\frac{p_{L}}{p_{R}}\right)^{z} ; \quad z=\frac{\gamma-1}{2 \gamma} . \tag{63}
\end{equation*}
$$

The Two-Shock Riemann solver gives

$$
\begin{equation*}
p_{*}=p_{t s}=\frac{g_{L}\left(p_{0}\right) p_{L}+g_{R}\left(p_{0}\right) p_{R}-\Delta u}{g_{L}\left(p_{0}\right)+g_{R}\left(p_{0}\right)}, \tag{64}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{K}(p)=\left[\frac{A_{K}}{p+B_{K}}\right]^{1 / 2}, \quad p_{0}=\max \left(0, p_{p v r s}\right) \tag{65}
\end{equation*}
$$

for $K=L$ and $K=R$.

Summary of HLLC Fluxes

- Step I: pressure estimate p_{*}.
- Step II: wave speed estimates:

$$
\begin{equation*}
S_{L}=u_{L}-a_{L} q_{L}, \quad S_{R}=u_{R}+a_{R} q_{R} \tag{66}
\end{equation*}
$$

with

$$
q_{K}=\left\{\begin{array}{cll}
1 & \text { if } & p_{*} \leq p_{K} \tag{67}\\
{\left[1+\frac{\gamma+1}{2 \gamma}\left(p_{*} / p_{K}-1\right)\right]^{1 / 2}} & \text { if } & p_{*}>p_{K}
\end{array}\right.
$$

and

$$
\begin{equation*}
S_{*}=\frac{p_{R}-p_{L}+\rho_{L} u_{L}\left(S_{L}-u_{L}\right)-\rho_{R} u_{R}\left(S_{R}-u_{R}\right)}{\rho_{L}\left(S_{L}-u_{L}\right)-\rho_{R}\left(S_{R}-u_{R}\right)} \tag{68}
\end{equation*}
$$

- Step III: HLLC flux. Compute the HLLC flux, according to

$$
\mathbf{F}_{i+\frac{1}{2}}^{h l / c}=\left\{\begin{array}{lcc}
\mathbf{F}_{L} & \text { if } & 0 \leq S_{L}, \tag{69}\\
\mathbf{F}_{* L} & \text { if } & S_{L} \leq 0 \leq S_{*}, \\
\mathbf{F}_{* R} & \text { if } & S_{*} \leq 0 \leq S_{R}, \\
\mathbf{F}_{R} & \text { if } & 0 \geq S_{R},
\end{array}\right.
$$

$$
\begin{equation*}
\mathbf{F}_{* K}=\mathbf{F}_{K}+S_{K}\left(\mathbf{U}_{* K}-\mathbf{U}_{K}\right) \tag{70}
\end{equation*}
$$

and
$\mathbf{U}_{* K}=\rho_{K}\left(\frac{S_{K}-u_{K}}{S_{K}-S_{*}}\right)\left[\begin{array}{c}1 \\ S_{*} \\ v_{K} \\ w_{K} \\ \frac{E_{K}}{\rho_{K}}+\left(S_{*}-u_{K}\right)\left[S_{*}+\frac{p_{K}}{\rho_{K}\left(S_{K}-u_{K}\right)}\right]\end{array}\right]$

There are two variants of the HLLC flux in the third step, as seen below.

- Step III: HLLC flux, Variant 1. Compute the numerical fluxes as

$$
\begin{gather*}
\mathbf{F}_{* K}=\frac{S_{*}\left(S_{K} \mathbf{U}_{K}-\mathbf{F}_{K}\right)+S_{K}\left(p_{K}+\rho_{L}\left(S_{K}-u_{K}\right)\left(S_{*}-u_{K}\right)\right) \mathbf{D}_{*}}{S_{K}-S_{*}} \\
\mathbf{D}_{*}=\left[0,1,0,0, S_{*}\right]^{T} \tag{72}
\end{gather*}
$$

and the final HLLC flux chosen according to (69).

- Step III: HLLC flux, Variant 2. Compute the numerical fluxes as

$$
\begin{equation*}
\mathbf{F}_{* K}=\frac{S_{*}\left(S_{K} \mathbf{U}_{K}-\mathbf{F}_{K}\right)+S_{K} P_{L R} \mathbf{D}_{*}}{S_{K}-S_{*}} \tag{73}
\end{equation*}
$$

with \mathbf{D}_{*} as in (72) and

$$
\begin{equation*}
P_{L R}=\frac{1}{2}\left[p_{L}+p_{R}+\rho_{L}\left(S_{L}-u_{L}\right)\left(S_{*}-u_{L}\right)+\rho_{R}\left(S_{R}-u_{R}\right)\left(S_{*}-u_{R}\right)\right] \tag{74}
\end{equation*}
$$

The final HLLC flux is chosen according to (69).

Numerical Results

Test problems:

Test	ρ_{L}	u_{L}	p_{L}	ρ_{R}	u_{R}	p_{R}
1	1.0	0.75	1.0	0.125	0.0	0.1
2	1.0	-2.0	0.4	1.0	2.0	0.4
3	1.0	0.0	1000.0	1.0	0.0	0.01
4	5.99924	19.5975	460.894	5.99242	-6.19633	46.0950
5	1.0	-19.59745	1000.0	1.0	-19.59745	0.01
6	1.4	0.0	1.0	1.0	0.0	1.0
7	1.4	0.1	1.0	1.0	0.1	1.0

Table 1. Data for seven test problems with exact solution

Godunov's method with HLLC Riemann solver applied to Test 1, with $x_{0}=0.3$. Numerical (symbol) and exact (line) solutions are compared at time 0.2.

Godunov's method with HLLC Riemann solver applied to Test 2, with $x_{0}=0.5$. Numerical (symbol) and exact (line) solutions are compared at time 0.15 .

Godunov's method with HLLC Riemann solver applied to Test 3, with $x_{0}=0.5$. Numerical (symbol) and exact (line) solutions are compared at time 0.012.

Godunov's method with HLLC Riemann solver applied to Test 4, with $x_{0}=0.4$. Numerical (symbol) and exact (line) solutions are compared at time 0.035 .

Godunov's method with HLLC Riemann solver applied to Test 5, with $x_{0}=0.8$. Numerical (symbol) and exact (line) solutions are compared at time 0.012 .

Godunov's method with HLL Riemann solver applied to Test 5, with $x_{0}=0.8$. Numerical (symbol) and exact (line) solutions are compared at time 0.012.

Godunov's method with HLL (left) and HLLC (right) Riemann solvers applied to Tests 6 and 7. Numerical (symbol) and exact (line) solutions are compared at time 2.0.

Closing Remarks:

- We have presented HLLC for the Euler equations.
- For the 2D shallow water equations see Toro E F Shock capturing methods for free-surface shallow flows. Wiley and Sons, 2001.
- For Turbulent flow applications (implicit version of HLLC), see Batten, Leschziner and Goldberg (1997).
- For extensions to MHD equations see Gurski (2004), Li (2005), Mignone et al. (2006++).
- For application to two-phase flow see Tokareva and Toro, JCP (2010).
- For extensions see Takahiro (2005) and Bouchut (2007), Mignone (2005).

