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Abstract:

This lecture is about a method to solve approximately
the Riemann problem for the Euler equations
in order to derive a numerical flux for a conservative method:

The HLLC Riemann solver
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Consider the general Initial Boundary Value Problem (IBVP)

PDEs : U;+FU),=0,0<x<L,t>0,
ICs  : U(x,0)=UO(x), (1)
BCs : U(0,t) =U(t), U(L,t) = Uy(t),

with appropriate boundary conditions, as solved by the explicit
conservative scheme

n ., At
UiJrl =U; - E[FH-% - Fi—%] : (2)

The choice of numerical flux Fi+; determines the scheme. There
2
two classes of fluxes:

» Upwind or Godunov-type fluxes (wave propagation
information used explicitly) and

» Centred or non-upwind (wave propagation information NOT
used explicitly).



Godunov's flux (Godunov 1959) is
1 = F(U,5(0)). 3)

in which U,-Jr%(O) is the exact similarity solution U,-Jr%(x/t) of the
Riemann problem

U:+FU),=0,
U, if x<0 s

U(x,0) = (4)
Ug if x>0,

evaluated at x/t = 0.



Example: 3D Euler equations.

p pu
pu pu® +p

U=| pv | , F= puv . (5)
pw puw
E u(E +p)

The piece—wise constant initial data, in terms of primitive
variables, is

L PR
up ur

WL = 1’78 s WR = VR . (6)
wi WR

PL PR



The Godunov flux F(Ui+%(0)) results from evaluation Ui+%(x/t)

at x/t = 0, that is along the t—axis.

X

0
Fig. 1. Structure of the exact solution Ui+%(x/t) of the Riemann
problem for the x—split three dimensional Euler equations. There
are five wave families associated with the eigenvalues
u — a, u (of multiplicity 3) and u + a.



Integral Relations
Consider the control volume V =[x, xg] x [0, T] depicted in Fig.
2, with

xt < TS, xg> TSgr, (7)

S, and Sk are the fastest signal velocities and T is a chosen time.
The integral form of the conservation laws in (4) in V reads

XR XR T T
/ U(x, T)dx = / U(X,O)dx+/ F(U(x, t))dtf/ F(U(xg, t))dt .

J XL XL 0 0
(8)

Evaluation of the right—hand side of this expression gives

/ U(X7 T)dX =xgUp — x U + T(F/_ — FR) , (9)

XL

where F; = F(U;) and Fg = F(Ug).

We call (9) the consistency condition.



Now split left—hand side of (8) into three integrals, namely

XR TSL TSR XR
/ U(x, T)dx = U(x, T)dx +/ U(x, T)dx + U(x, T)dx
XL

XL TSL TSR

X

X TS TSR xR
Fig. 2. Control volume [x;, xg] x [0, T] on x—t plane. S and Sg are the
fastest signal velocities arising from the solution of the Riemann problem.



Evaluate the first and third terms on the right—hand side to obtain

XR TSR
/ U(X7 T)dX = / U(X7 T)dX+(TSL—XL)UL+(XR—TSR)UR .
XL 7—SL

(10)
Comparing (10) with (9) gives
TSk
/ U(X, T)dX: T(SRUR—SLUL—I—FL—FR) . (11)
TS,

On division through by the length T(Sg — S;), which is the width
of the wave system of the solution of the Riemann problem
between the slowest and fastest signals at time T, we have

1 TSk SRUR — S Uy + FL — Fr
U(x, T)dx = . (12
T(Sr — S1) /TSL b, Tebe SrR—SL (12)



Thus, the integral average of the exact solution of the Riemann
problem between the slowest and fastest signals at time T is a
known constant, provided that the signal speeds S; and Sg are
known; such constant is the right—hand side of (12) and we denote
it by

Sr— St '
We now apply the integral form of the conservation laws to the left
portion of Fig. 10.2, that is the control volume [x;,0] x [0, T]. We
obtain

v = (13)

0
U(x, T)dx = —-TS;U; + T(F. — For) , (14)
TS,

where Fy, is the flux F(U) along the t—axis. Solving for Fo; we
find
1 0
For=F.—SU, — = U(x, T)dx . (15)
T Jrs,



Evaluation of the integral form of the conservation laws on the
control volume [0, xg] x [0, T] yields

1 TSg
For = Fr — SrRUgr + T/ U(X, T)dX . (16)
0

The reader can easily verify that the equality

For = For

results in the consistency condition (9). All relations so far are
exact, as we are assuming the exact solution of the Riemann
problem.



The Harten-Lax-van Leer (HLL) Approximate Riemann
Solver (1983).

) U, if xX<S,
Ux,t)=<¢ UM if S <X<Sg, (17)
UR if % Z SR )

Fig. 3 shows the two-wave structure of this approximate Riemann
solver.

0
Fig. 3. Two-wave model. Approximate HLL Riemann solver.
Solution in the Star Region consists of a single state U"" separated
from data states by two waves of speeds S; and Sg.



The HLL flux F" for the subsonic case S; < 0 < Sg is found by
inserting U in (13) into (15) or (16) to obtain

Fh” =F, + SL(Uh” — UL) , (18)

or
F' = Fr + Sr(U" — Ug) . (19)

Use of (13) in (18) or (19) gives the HLL flux

il _ SRFL = SiFg + 515r(Ur — UL)
Sr— 51

for the subsonic case §; < 0 < Spg.



The corresponding HLL intercell flux for the approximate Godunov
method is then given by

( F f 0<S,,
FL— SF -
P, = { RFLZSL E:SL;R(UR U s <0< s
Fr f 0> Sk

> Given the speeds S; and Sg we have an approximate intercell
flux (21) to be used in the conservative formula (2) to
produce an approximate Godunov method.

» A shortcoming of the HLL scheme, with its two-wave model,
is exposed by contact discontinuities, shear waves and
material interfaces, or any type of intermediate waves.



The HLLC Approximate Riemann Solver (Toro et al, 1992).

» The HLLC scheme is a modification of the HLL scheme
whereby the missing contact and shear waves in the Euler
equations are restored.

» HLLC for the Euler equations has a three-wave model

s S, Sk
—e
Ust T
lJL UR
X

0
Fig. 4. HLLC approximate Riemann solver. Solution in the Star
Region consists of two constant states separated from each other
by a middle wave of speed S,.



Useful Relations. Consider Fig. 2.

» Evaluation of the integral form of the conservation laws in the
control volume reproduces the result of equation (12), even if
variations of the integrand across the wave of speed S, are

allowed.

> Note that the consistency condition (9) effectively becomes
the condition (12).

» By splitting the left-hand side of integral (12) into two terms
we obtain

1 TSgr
_ U(x, T)dx = Uy + Usr , 22
T(Sr — S1) /TSL b T) ‘ R (22)



where the following integral averages are introduced

1 TS.
U*L = 7_(5*—5L)/ U(X, 7_)(.'I'X7

TS,
(23)
1 TSk
Uir=——"— U(x, T)dx .
# T 5 J, UO T
Use of (23) into (22) and use of (12), make condition (9)
Sx — S[_ SR — 5* hil
U. U.zr=U", 24
<5R—5L> L+<5R—5L> ? 24)
The HLLC approximate Riemann solver is given as follows
UL ) if % S SL )
Y o U*L 3 if 5L§%§5*7
U(x,t) = U . if S.<*<5Sg, (25)
Up , if T >S5k



Now we seek a corresponding HLLC numerical flux of the form

FL , if 0§SL7
F if S,<0<S

hlilc *L L=" =2

Fiei = Fir o if 5, <0< 5, .
FR , if OZSR7

with the intermediate fluxes F,; and F.r still to be determined, see
Fig. 4. By integrating over appropriate control volumes we obtain

F*L = FL + SL(U*L - UL) ) (27)
F*R - F*L + 5*(U>|<R - U*L) y (28)
F.r = Fr + Sr(U.r — UR) . (29)

These are three equations for the four unknowns vectors U, F.,,
U*Rv F*R-



We seek the solution for the two unknown intermediate fluxes F,;
and F.r. There are more unknowns than equations and some extra
conditions need to be imposed, in order to solve the algebraic
problem. We impose

Pel = PR = P Loy pressure and normal velocity (30)
U = Uxr = Uy,
Vil = Vv, ViR =V, . "
+L Lo &R R % for tangential velocities
Wil = WL , Wir = WR.

(31)
Conditions (30), (31) are identically satisfied by the exact solution.
In addition we impose

and thus if an estimate for S, is known, the normal velocity
component u, in the Star Region is known.



Now equations (27) and (29) can be re—arranged as
StUa —Fop = 5U; —Fp, (33)

SrRU.r — F.r = SRUr — Fg, (34)

where the right—hand sides of (33) and (34) are known constant
vectors (data). We also note the useful relation

F(U)=wU+pD, D=10,1,0,0,u]" . (35)

Assuming S; and Sg to be known and performing algebraic
manipulations of the first and second components of equations
(33)—(34) one obtains

Pt = pL+p(Se—ur)(S«—ur) . p«r = Pr+PR(SR—UR)(S<—uR) .
(36)



From (30) p.1 = p«gr, which from (36) gives

_ PrR—pLt pruc(Se — ur) — prur(Sr — uR) (37)

S,
p(St — uL) — pr(Sr — UR)

Manipulation of (33) and (34) and using p., and p.r from (36)
gives

F.x = Fx + SK(U*K — UK) s (38)
for K=L and K=R, with the intermediate states given as
1
S.
U o SK — Uk VK
*K = PK SK — S* Wk
Ex PK
— 4+ (5. — Si+ ————m—
PK ( k) pk(Sk — uk)

(39)
The final choice of the HLLC flux is made according to (26).



Variation 1 of HLLC.
From equations (33) and (34) we may write the following solutions
for the state vectors U,; and U,

U, — 2xkYk —Fx+pkD.
*K — SL — S* )

D, =1[0,1,0,0,5,], (40)

with p, and p.gr as given by (36). Substitution of p.x from (36)
into (40) followed by use of (27) and (29) gives direct expressions
for the intermediate fluxes as

S:(SkUk — Fk) + Sk(pk + pL(Sk — uk)(S« — uk)) Dy
SK - 5* ’
(41)
with the final choice of the HLLC flux made again according to
(26).

F*K =



Variation 2 of HLLC.

A different HLLC flux is obtained by assuming a single mean
pressure value in the Star Region, and given by the arithmetic
average of the pressures in (36), namely

1
Pir = E[PL +pr+pr(Se—ur)(Ss — uL) + pr(Sr — ur) (S« — ur)] -
(42)
Then the intermediate state vectors are given by
_ SkUk — Fx + PrrD,
B Sk — S« '

Substitution of these into (27) and (29) gives the fluxes F,; and

F.r as

5*(SKUK — FK) + SKPLRD*
Sk — S« '

Again the final choice of HLLC flux is made according to (26).

F*K =

(44)



Remarks.

» The original HLLC formulation (38)—(39) enforces the
condition p,; = p«gr, Which is satisfied by the exact solution.

> In the alternative HLLC formulation (41) we relax such
condition, being more consistent with the pressure
approximations (36).

> There is limited practical experience with the alternative
HLLC formulations (41) and (44).

» General equation of state. All manipulations, assuming that
wave speed estimates for S; and Sg are available, are valid for
any equation of state; this only enters when prescribing
estimates for S; and Sg.



Multidimensional multicomponent flow.

Consider the advection of a chemical species of concentrations g
by the normal flow speed u. Then we can write the following
advection equation

Otqr +udxq =0, forl=1,....,m.

Note that these equations are written in non—conservative form.
However, by combining these with the continuity equation we
obtain a conservative form of these equations, namely

(pai)e + (puqi)x =0, for I =1,...,m.

The eigenvalues of the enlarged system are as before, with the
exception of Ao = u, which now, in three space dimensions, has
multiplicity m + 3.



These conservation equations can then be added as new

components to the conservation equations in (1) or (4), with the

enlarged vectors of conserved variables and fluxes given as

P
pu
pv
pw

E
Pa1

Pqi

L Pdm

pu

pu® +p
puv
puw

u(E +p)
puqi

puq;

L pugm

(45)



The HLLC flux accommodates these new equations in a very
natural way, and nothing special needs to be done. If the HLLC
flux (38) is used, with F as in (45), then the intermediate state
vectors are given by

(46)
for K=Land K = R.



Wave Speed Estimates



We need estimates S;, S, and Sg. Davis (1988) suggested

St=u —a., SR=ur+arR, (47)
S5, = min {UL —ar,uUr — aR} , Sp= max{uL +ap, uUg + aR} .
(48)

Both Davis (1988) and Einfeldt (1988), proposed
Si=i—-3, SR=10+3, (49)

0 and 3 are the Roe—average particle and sound speeds respectively

N 1/2
g YPLLTVPRIR o\ onyi-L@) T (s0)
VAL + /PR 2

with the enthalpy H = (E + p)/p approximated as

i VPLHL + \/prRHR
VPL+ /PR

(51)



Einfeldt (1988) proposed the estimates

SS=u—-d, Sg=10

Q|
—

(6]

N
~

for his HLLE solver, where

2 \/PLQ% + \/PRQ%Q

= up — U 2
d° = TRV + n2(ur L) (53)
and
1 VpV/er
PR p P Y

These wave speed estimates are reported to lead to effective and
robust Godunov—type schemes.



One-wave model.
Consider a one-wave model with single speed ST > 0.

Rusanov: By choosing S, = —S* and Sg = S™ in the HLL
flux (20) one obtains a Rusanov flux (1961)

1 1
Fi+1/2 = E(FL + FR) —_ §S+(UR - UL) . (55)
Lax-Friedrichs: Another possibility is ST = S, the wave

speed for imposing the CFL condition, which satisfies

Sn CCf/AX

max = A t ) (56)

where C.q is the CFL coefficient. For C.p =1, ST = %,
which gives the Lax—Friedrichs numerical flux
1 Ax

Fii10= (FL +FRr) — §E(UR -Up). (57)



Pressure—Based Wave Speed Estimates

Toro et al. (1994) suggested to first find an estimate p, for the
pressure in the Star Region and then take

S.=u.—aqr, SrR=uUr+ arqr, (58)
1 if pe < pk
1+%(P*/PK—1) it pe>pk .

» This choice discriminates between shocks and rarefactions.

» If the K wave is a rarefaction then the speed Sk is the speed
of the head of the rarefaction, the fastest signal.

» If the K wave is a shock wave then the speed is an
approximation of the shock speed.



A simple, acoustic type approximation for pressure is (Toro, 1991)

1 1
Px = max(O, ppvrs) s Ppvrs = E(pL + PR) - E(UR - UL)PB , (60)

where
1

_ _ 1
PZE(PH-PR% 3= 5(3L+3R)- (61)

Another choice is furnished by the Two—Rarefaction Riemann
solver, namely

—1 1/Z
aL+aR—VT(uR— UL)] 7 (62)

p pr p fr—
Lo aL/pf + ar/ Pk

where

Pir = <pL)Z =21 (63)



The Two—Shock Riemann solver gives

gL(po)pL + gr(Po)Pr — Au
gL(po) + gr(po)

Px = Pts = ) (64)

where

Ak
p+ Bk

1/2
%@F{ ] , po = max(0, ppurs) (65)

for K =L and K = R.



Summary of HLLC Fluxes

» Step I: pressure estimate p.
» Step II: wave speed estimates:

Si=u.—aq., SrR=URH+ arRqR, (66)
with
1 if Px < Pk
Gk = +1 vz (67)
1+7T(P*/PK—1) if pe>pk.
v
and
_ S, —u) — Sp —
5. _ PR pL+ prur(Se — ur) — prur(Sr — UR) . (68)

pr(St — ur) — pr(Sr — UR)
» Step lll: HLLC flux. Compute the HLLC flux, according to

F, if 0<S;,
F if 5 <0<8S
hllc __ *L L > > Ox%
F"+% ) Fur if S, <0< Sg, (69)

Fr if 0> Sgr,



and

U.k = pk (

F.x = Fx + Sk(U.x — Uk)

Sk — uk

)

7+(5*_UK) 5*+

L PK

VK
WK

(70)

PK

Pk (Sk — uk)




There are two variants of the HLLC flux in the third step, as seen
below.

» Step Ill: HLLC flux, Variant 1. Compute the numerical fluxes

as
S+(SkUk — Fk) + Sk(pk + pL(Sk — uk)(S« — uk))D.

Fox = ,
K Sk — 6.

D. =1[0,1,0,0,S.]" ,
(72)
and the final HLLC flux chosen according to (69).
» Step Ill: HLLC flux, Variant 2. Compute the numerical fluxes

as
S:(SkUk — Fx) + Sk PLrDx

Sk — S« ’

F*K = (73)

with D, as in (72) and
1
Pigr = 5[PL+PR+PL(5L—UL)(S*—UL)+PR(5R—UR)(S*—UR)] :

(74)
The final HLLC flux is chosen according to (69).



Numerical Results



Test problems:

Test

AL uL, PL PR UR PR
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 | 5.99242 | -6.19633 | 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01
6 14 0.0 1.0 1.0 0.0 1.0
7 14 0.1 1.0 1.0 0.1 1.0

Table 1. Data for seven test problems with exact solution
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Godunov's method with HLLC Riemann solver applied to Test 1,
with xg = 0.3. Numerical (symbol) and exact (line) solutions are
compared at time 0.2.
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Godunov's method with HLLC Riemann solver applied to Test 2,
with xg = 0.5. Numerical (symbol) and exact (line) solutions are
compared at time 0.15.
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Godunov’'s method with HLLC Riemann solver applied to Test 3,
with xg = 0.5. Numerical (symbol) and exact (line) solutions are
compared at time 0.012.
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Godunov's method with HLLC Riemann solver applied to Test 4,
with xg = 0.4. Numerical (symbol) and exact (line) solutions are
compared at time 0.035.
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Godunov’'s method with HLLC Riemann solver applied to Test 5,
with xg = 0.8. Numerical (symbol) and exact (line) solutions are
compared at time 0.012.
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Godunov's method with HLL Riemann solver applied to Test 5,
with xo = 0.8. Numerical (symbol) and exact (line) solutions are
compared at time 0.012.
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Godunov's method with HLL (left) and HLLC (right) Riemann
solvers applied to Tests 6 and 7. Numerical (symbol) and exact
(line) solutions are compared at time 2.0.



Closing Remarks:



We have presented HLLC for the Euler equations.

For the 2D shallow water equations see Toro E F Shock
capturing methods for free-surface shallow flows. Wiley and
Sons, 2001.

For Turbulent flow applications (implicit version of HLLC), see
Batten, Leschziner and Goldberg (1997).

For extensions to MHD equations see Gurski (2004), Li
(2005), Mignone et al. (2006++).

For application to two-phase flow see Tokareva and Toro, JCP
(2010).

For extensions see Takahiro (2005) and Bouchut (2007),
Mignone (2005).
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