Summer School « Non-homogeneous fluid and flows », Prague, August 27-31, 2012

Nonlinear properties of internal gravity waves Part I : homogeneous medium Chantal STAQUET LEGI & University of Grenoble, France

Internal gravity waves ?

Oscillations of a fluid particle in a stably stratified fluid

- stably-stratified medium, located at altitude z
- Move the particle adiabatically upwards to altitude $z+\zeta$. The particle is no longer in equilibrium, being subject to the *buoyancy force* :

 $-\rho(z+\zeta)\mathbf{g} + \rho(z)\mathbf{g} \approx -g d\rho/dz \zeta$

• Apply Newton's law to the particle : $\rho(z) d^2 \zeta/dt^2 = -g d\rho/dz \zeta$ or

$$\label{eq:gamma_state} \begin{split} d^2\zeta/dt^2 + N^2\;\zeta &= 0\\ {\rm with}\;N^2 &= \text{-}\;g/\rho(z)\;d\rho/dz \end{split}$$

N(z) is the Brunt-Vaisala (or buoyancy) frequency.

Internal gravity waves

- In a continuous medium, any perturbation with a vertical component gives rise to waves. The restoring force is the buoyancy force $-\vec{g}\frac{d\rho}{dz}\zeta$ where ζ is the vertical displacement associated with the perturbation.
- What is (and how to find) the dispersion relation of these waves ?

Consider a medium in which the function N(z) is constant (*homogeneous* medium).

Start from the Navier-Stokes equations in the Boussinesq equations. Linearize these equations about a rest state. These equations can be reduced to a single equation for the vertical velocity component w:

$$\frac{\partial^2 \nabla^2 w}{\partial t^2} + N^2 \nabla_H^2 w = 0,$$

where $\nabla_{H}^{2} = \partial^{2} / \partial x^{2} + \partial^{2} / \partial y^{2}$ is the horizontal Laplacian.

Internal gravity waves (continued)

• Linearized Boussinesq equations about the rest state, *for N constant*, written for w :

$$\frac{\partial^2 \nabla^2 w}{\partial t^2} + N^2 \nabla_H^2 w = 0.$$

This is a PDE with constant coefficients, in an infinite medium.

• One can therefore look for a plane wave solution: $w(\vec{x}, t) = We^{i(\vec{k} \cdot \vec{x} - \omega t)}$ which requires that

$$\omega^2 = N^2 \sin^2 \theta$$

where θ is the angle that the group velocity makes with the vertical. This is the *dispersion relation* of internal gravity waves, valid for a homogeneous medium.

• In a rotating medium with angular velocity Ω , the dispersion relation becomes

$$\omega^2 = N^2 \cos^2 \theta + (2\Omega)^2 \sin^2 \theta$$

$$\rightarrow (2\Omega)^2 \leq \omega^2 \leq N^2$$

Properties of internal gravity waves : illustrations

Internal gravity waves emitted by an oscillating paddle : http://www.phys.ocean.dal.ca/programs/doubdiff/pics/iw1.mpeg

Internal gravity waves emitted by an impulse : http://www.phys.ocean.dal.ca/programs/doubdiff/pics/iw4.mpeg

Evidence of internal gravity waves 1. In laboratory experiments

The experiment of Görtler (1943)

ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK INGENIEURWISSENSCHAFTLICHE FORSCHUNGSARBEITEN

Band 23 April 1943 Heft 2

Inhalt:

Selie	Bet
Hawatanfaäter H. Görtler: Eber sine Schwin- gungenrechting in Flösigkeiten mit stabiler Dichteschietung. 43	Kleine Mitteilungen, P. Werkmeister: äre Angelektung des nebefacher. Vorwärtsein- schneidens K. Stohlege Eine Verhäfachung het der Long-
W. Mothwish in: Shrömanigen über Bodtserhebungen unf der sotlerenden Eede 72	rischen Integration gewähnlicher Differentiel- gisiehungen H. Börkmar: Sine von Verhaltschieden abgeleigte
K.A. Deukern Xur Schülicht der chastischen Schnieul 41. Veih	Interpretation einer Sährerungslimmt der zewähn- habet interet Differentintgleichung 1. Greinung 1 W. Hogber, L. Schwarz und K. Wieghardt:
Zusamman fassender Bericht, H. Bachhaise Die Konfande höregestnetzenden. Funktion mit Hösederer Berickschligung ihrer Sofenting für die Ungestion der Wellengleichung in dem Ko- ordinaten einer Retaliumpanationleich (H. Tall). 101	Explorences on Kanka, Differential disidences Liberagemethoden and Liberagen Bachbesprechungen Weitereingegragen Sicher Nachriehten

HAUPTAUFSÄTZE

Über eine Schwingungserscheinung in Flüssigkeiten mit stabiler Dichteschichtung.

Von H. Garfler in Göttingen.

(Aus dem Kaiser-Wilbelm-Institut für Strömungsforschung.)

Die Thearie der erweungenen kleinen Schwingungen in einer der Schwarkraft unterworfenen reibungslosen Flüssigkeit mit stabiler Dichteschichtung führt aur Varanninge einer neuarligen Schwingungeerscheinung: Die Differentialgleichung zweiter Ordnung für die Verschiehungungeländen zeitlich harmonischer Schwingungen als Funktionen der Ortskoordinaten ist für Frequenzen unterhalt einen von der jeweiligen Dichteschichtung abhängigen kritischen Werts vom hyperbolischen Typ. Dangemäß treten Regularitäls-defahle dieser Größen en einem Orto zugleich in allen Punkten der durch dieven Ort gehenden reellen Charakteristiken der Differentialgleichung auf. In einfachen Experimenten laßt sich diese Erecheinung beabachten. Die Iheoretischen Geseizmäßigkeiten des Charakteristikenverlaufs im einzelnen erfahren dabes ihre Bestäligung.

§ 1. Einleitung.

Kleine Schwingungen in reibungslosen, der Schwerkraft unterworfenen Flüssigkeiten oder Gasen mit in der Rahelage horizontaler und stabiler Diehteschichtung sind mehrfach theoretisch untersucht worden 3. Man interessierte sich vorwiegend für das Problem der Wellemansbreitung in solchen Medien mit teilweise festen oder freien Berandungen. Auf diese Untersochungen soll hier nicht näher eingegangen werden. Die vorliegende Betrachtung gründet sich auf einen bemerkenswerten mathematischen Sachverhalt bei den Bewegungsgleichungen zeitlich harmonischer Schwingungen, dem bisher merkwürdigerweise nicht die verdiente Beachtung geschenkt worden ist. Dies überrascht um so mehr, als bereits durch schr einfache und naheliegende Schlußfolgerungen aus diesem Sachverhalt theoretische Vor-

¹⁴ Signarud ward: Lord Kayleigh: Investigation on the character of the equilibrium of an incompose-shift here in the second state of a solution of a so

7

Evidence of internal gravity waves 1. In laboratory experiments (cont'd)

Non rotating medium The Mowbray and Rarity (1967) experiment

C g k

Dispersion relation
$$\omega^2 = N^2 \sin^2 \theta$$

Rotating medium (from Peacok and Tabaei, 2005)

Evidence of internal gravity waves 2. In the atmospheric boundary layer

SOLITONS AND OTHER STRUCTURES IN THE STABLE BOUNDARY LAYER

Larry Mahrt and Bob Heald

This video shows a wide variety of structures in the stable nocturnal boundary layer taken at dawn. The video is speed up generally by a factor of 32 x to better visualize the motions.

http://youtu.be/eydofsyX3Ns

Evidence of internal gravity waves 3. In the atmosphere

Blowing of the wind over two islands ...

A 'high elevation' island : *von Karmann street U/(NH) < 1* A 'small elevation' island : *Internal gravity waves (« lee waves ») U/(NH) > 1*

Evidence of internal gravity waves 4. In the mesosphere

View of noctilucent clouds (in the mesosphere, at 80 km altitude) from Kustavi, Finland (61° N, 21° E) on 22 July 1989 showing phase planes and streak structures. The planes are separated by about 50 km and streaks by 3 to 5 km (from Fritts et al. 1993; photograph by Pakka Parviainen).

Evidence of internal gravity waves 5. In the upper ocean

- C

Internal waves (propagating *below* the free surface) generated by the interaction of the tide with a continental slope (SAR image).

Evidence of internal gravity waves 6. The internal tide

FIG. 9. Diagram showing the theoretical ray path (chained line) for a beam of internal tidal energy at the M_2 tidal frequency emanating from the critical depth (385 m) on the upper slopes and reflecting off the Biscay abyssal plain at a depth of about 4200 m, 58 km from the critical point. Also shown is a summary of the internal tidal oscillations obtained during the RRS *Challenger* cruises in 1988 (CH 31/88) and 1987 (CH 18/87). Vertical lines represent mooring and CTD station positions and are identified with numbers. CTD stations 5 and 6 and mooring 116 are from the 1988 cruise, whereas moorings 110 and 111 and CTD 19 were obtained in 1987. The depth of the maximum amplitude of the internal tidal oscillation found at each station is plotted ω an open circle and the range where the amplitude is more than 70% of the maximum value is indicated by the arrows. Two further rays are shown (solid lines) passing through the 70% limits near mooring 110. The phase of the maximum upward displacement is given (within the circles) in hours with respect to HWP. A ray at the M_2 tidal frequency would intersect mooring 116 at the depth marked M_2 ; S_2 is the corresponding point for a ray at the S_2 tidal frequency. The topography is depicted by the bold line and is critical at 385 m; the horizontal distance scale is measured from the critical point.

Numerical simulations (N cst) (Pairaud et al. 2010)

Evidence of internal gravity waves 7. In the deep ocean

Evidence of internal gravity waves 8. In the interior of the Sun

Transport of Lithium by (weakly nonlinear) IGW toward the core in the radiative zone \rightarrow burning of Li \rightarrow account for under-abundance of Li in the Sun ? (Schatzman, JFM, 1996).

Generation of internal gravity waves in the Atmosphere and the Ocean (brief summary)

- In the atmosphere the main generation process is the wind blowing over topography
 → « lee waves ».
- In the ocean, the main generation processes are :
 - the wind blowing at the surface of the ocean (\rightarrow near-inertial waves);
 - the tide passing over topography \rightarrow « internal tide » ;
 - in the Southern Ocean : the Antarctic Circumpolar Current passing over bottom topography → « lee waves ».
- Most studies of internal gravity waves address the instability, breaking and mixing properties of internal gravity waves (i.e. their nonlinear properties).

Why?

Generation of internal gravity waves in the Atmosphere and the Ocean (brief summary)

- In the atmosphere the main generation process is the wind blowing over topography \rightarrow « lee waves ».
- In the ocean, the main generation processes are :
- the wind blowing at the surface of the ocean ;
- the tide passing over topography \rightarrow « internal tide » ;
- in the Southern Ocean : the Antarctic Circumpolar Current passing over bottom topography \rightarrow « lee waves ».
- Most current studies of internal gravity waves address the instability, breaking and mixing properties of internal gravity waves (i.e. their nonlinear properties).

Why?

Linear non-dissipative internal gravity waves transport the momentum and the energy of the source which emits them **without transport of mass** (non-acceleration theorem).

 \rightarrow Nonlinear (finite amplitude or breaking) dissipative waves induce transport properties :

- through momentum deposition in the atmosphere
 - \rightarrow strong impact on ambient winds
- through mixing of mass and temperature in the ocean
 - \rightarrow strong impact on thermohaline circulation.

The thermohaline circulation

Zonally averaged stream function, expressed in Sv (Lumpkin & Speer 2007)

Deep cold water masses of the thermohaline circulation return to the surface while mixing.

Mixing is supposed to occur through breaking of internal gravity waves.

OUTLINE

Lectures 1 and 2

- Parametric instability and breaking of a monochromatic internal gravity (IGW)
- Application to the oceanic internal tide
- Statistical properties of nonlinear IGW

Lectures 3 and 4

- Propagation of internal gravity waves in a non homogeneous fluid (in a background N(z) stratification)

- Propagation of internal gravity waves in a non homogeneous flow (in a background U(y,z) velocity field)
- -Wave-induced mean flow

Parametric instability of a monochromatic internal gravity wave

Instability of a monochromatic internal gravity wave Definition of the wave steepness

In the following, we consider a monochromatic internal gravity wave (\mathbf{k}_0, Ω_0) and assume that fluid motions occur in the propagation plane $(\mathbf{k}_0, \mathbf{g})$ of the wave. This a valid assumption if the amplitude of the wave is infinitely small.

The normalized amplitude or steepness of the wave is defined as: $s = u_{max} / c_x$ where c_x is the phase velocity in the *x*-direction.

Instability of a monochromatic internal gravity wave Resonant interactions and parametric instability

Any monochromatic internal gravity wave of steepness < 1 is unstable to parametric instability, whatever the statification level of the fluid (Drazin 1977).

This result can be derived from resonant interaction theory for s \ll 1 (Hasselmann 1967) and from stability analysis of the primary wave for s<1 (Mied 1976).

How does the parametric instability manifest itself?

Instability of a monochromatic internal gravity wave Resonant interactions and parametric instability

- The instability occurs in the propagation plane (**k**₀,**g**) of the primary wave : it is a two-dimensional instability.
- The instability is selected by molecular effects and, in a numerical simulation, by the domain size as well.
- The instability manifests itself as "bands" with thickness equal to the molecular- selected scale and with angle equal to $\theta_1 / N\cos\theta_1 = 0.5 N\cos\theta_0$

Growth rate of the instability as a function of the wave vector modulus of the secondary wave.

Vorticity field of the secondary waves at t=7 ($2\pi/N$)

Parametric instability of a monochromatic internal gravity wave : an optimum scenario to perturbation growth

• If u'w' is around maximum when $dU_0/dZ < 0$, the KE perturbation is forced.

• If u'w' is around minimum (≈ 0) when $dU_0/dZ > 0$, little (no) KE energy is given back to the primary wave.

 \rightarrow perturbation energy should be under **kinetic** form during the half primary wave period when **dU**₀/**dZ**<0 and under **potential** form during the other half-period when **dU**₀/**dZ**>0.

Hence the **perturbation kinetic energy** should have the same frequency as the **primary wave vorticity**, implying that the instability should be of **the parametric type**.

An approximate expression of these energy exchange terms can be computed from a kinematic model of the perturbation. In particular, we show that (Koudella & Staquet JFM 2006) $<-u'w' dU_0/dZ > / <-\rho'w' dR_0/dZ > = \cos(\theta_1 - \theta_0)$ (with Ncos(θ_1)=Ncos(θ_0)/2) From parametric instability to breaking (for a monochromatic internal gravity wave).

Three-dimensional destabilization of a monochromatic internal gravity wave (s=0.3)

Six density surfaces for an unstable primary wave of initial steepness 0.3, plotted at t=16 ($2\pi/N$).

Three-dimensional destabilization of a monochromatic internal gravity wave (s=0.3)

Six density surfaces at successive times.

Three-dimensional destabilization of a monochromatic internal gravity wave (s=0.7)

Hence, the amplification of parametric instability leads to locally overturned isopycnals ...

10.22

and the flow breaks through a buoyancy-induced instability ...

Cross-section of the density field in a plane perpendicular to the propagation plane of the primary wave, at successive times.

The development of a buoyancy-induced (or Rayleigh-Taylor) instability is displayed. The initial steepness of the primary wave is 0.7.

... as in laboratory experiments

Breaking internal gravity wave (Benielli & Sommeria 1998)

Stably-stratified shear layer (Schowalter, Lasheras & van Atta 1994)

What does happen if the initial steepness is greater than 1?

Density surface of a s=1.45 monochromatic internal gravity wave at 5 ($2\pi/N$) (i.e. close to initial time)

The wave breaks through a buoyancy-induced instability

In the atmosphere

The wave amplitude grows as the wave propagates upwards so that parametric instability (with growth rate $\sim 1/s$) should not commonly occur.

In the ocean

The instability may have time to develop in the ocean because ocean is an incompressible (and confined) medium.

 \rightarrow the primary wave field should be sustained during the slow growth of the instability (growth rate ~ 1/s). This is the case for the internal tide.

Parametric instability (PSI) of an internal tide beam and mixing in the ocean

- 1. PSI in internal tide from joint laboratory experiments and numerical simulations (no rotation)
- 2. The influence of rotation on PSI in internal tide from numerical simulations at oceanic scale
- 3. Evidence of PSI from field campaigns of internal tide
- 4. The possible rôle of PSI in oceanic mixing

Emission of internal gravity waves by an oscillating body (→ generation of beams)

Mowbray & Rarity 1967 (f=0)

 $ω^2 = N^2 sin^2 θ$ (+ f² cos²θ, where f=2ΩsinΦ is the Coriolis parameter)

Pairaud et al. 2010

Laboratory experiments on the Coriolis platform (LEGI, Grenoble)

The internal tide field at early times

Pairaud et al. 2010

Parametric instability (PSI) of the internal tide beam No rotation

Amplitude of the horizontal velocity **filtered at half the forcing frequency**

over periods 22 to 25

Influence of rotation on an oceanic wave beam

2D numerical simulations : **horizontal velocity component** of the internal tide, at two different latitudes, at 7.5 days after the forcing by the barotropic tide has been applied (no initial velocity field). **The parameter N is constant.**

 $f = 2 \Omega \sin \Phi$ is the Coriolis parameter

PSI in an oceanic wave beam

Same as previous slide, except that the **horizontal velocity component** has been filtered at **half the forcing frequency** (denoted M_1) to identify the occurrence of a parametric instability.

 $f = 2 \Omega \sin \Phi$ is the Coriolis parameter

Parametric instability of the internal tide : oceanic *in situ* evidence

Carter & Gregg 2005 JPO

PSI in an internal tide beam (cont'd)

Assuming the wave beam behaves as a monochromatic wave of frequency M_2 , it may bear a parametric instability.

Assuming that the perturbation excited by PSI behaves also as a monochromatic wave of frequency M_1 (= $M_2/2$), this frequency satisfies the dispersion relation and is double-bounded: $f \le M_1 \le N \Leftrightarrow f \le M_2/2 \le N$

Hence, $f = 2\Omega \sin\phi$ has to be smaller than $M_2/2$ for the instability to grow, namely $\phi \leq \phi_c = a \sin(0.25 \text{ M}_2/\Omega)$, denoted the **critical latitude** and equal to 28.9°.

Hence, the M₂ beam can bear a parametric instability for a latitude smaller than 28.9°.

Horizontal group velocity of the M_1 perturbation, versus the Coriolis parameter f. This group velocity vanishes at the critical latitude \rightarrow the amplitude of the M1 perturbation is strongest at the critical latitude.

Implication for mixing

Figure : E vs Kd, with -diapycnal diffusivity estimated from oceanic measurements -energy density computed numerically at the measurement locations (and averaged over depth 900-1450 m)

<u>Conclusion</u>: Energy is not efficiently transferred toward small scales for $\Phi>35^{\circ}$.

By contrast, a mechanism of energy transfer toward small scales exist for $20^{\circ} < \Phi < 30^{\circ}$ and this is where PSI has the largest local amplitude.

Mixing in the ocean and PSI in an internal tide beam

Mixing, as measured by a turbulent diffusivity, is largest around the critical latitude, where the perturbation excited by PSI has the largest amplitude.

Figure 4. Global distribution of the diapycnal diffusivity calculated by incorporating the numerically-predicted $E(\theta, \phi)$ at each longitude and latitude into the empirical relationship (2).

Hibiya et al. GRL 2006

Statistical properties of internal gravity waves

The spectra of nonlinear internal gravity waves : a universal behavior?

The spectra of nonlinear internal gravity waves Cont'd

A simple argument to account for these spectra

One assumes that the amplitude of the waves has saturated namely $L/U \approx 1/N$ (i.e. $Fr = U/NL \approx 1$) and that this relation holds at all scales 1/k along the inertial range of the spectra

With L=1/k and U(k)=[kE(k)]^{1/2} one gets k [kE(k)]^{1/2} / N \approx 1 \Rightarrow E(k) \approx N² k_z⁻³, since k \approx k_z.

The factor 0.2 remains to be clarified (mixing efficiency ?)

Conclusions

- Internal gravity waves are propagating motions in a stably stratified fluid, the restoring force being the buoyancy force.
- Internal gravity waves can be unstable to parametric instability (PSI) whatever the stratification level of the fluid, for a wave steepness smaller than ≈ 0.7.
- PSI triggers breaking, which enhances local mixing.
- The internal tide, which are internal gravity waves generated by the tide passing over submarine topography, are thus unstable to PSI but, because rotation influces their dynamics, for a latitude smaller than 28.9°.
- Oceanic mixing is strongest around this latitude, which is attributed to internal tide PSI.
- Breaking internal gravity waves have a universal spectrum of the form $E(k) \approx 0.2 \text{ N}^2 \text{ kz}^{-3}$, both for the kinetic and potential energy. A simple argument based on wave saturation accounts for these spectra.